IDEAS home Printed from
   My bibliography  Save this article

Forecasting with preliminary data: a comparison of two methods


  • Sucharita Ghosh
  • Donald Lien


This study examines two alternate methods, a vector autoregression error correction model and a state space model, to forecast revised United States trade balance figures. Both these methods incorporate preliminary and revised trade data. The results obtained from these methods were compared to the benchmark forecasts generated by revised-data-only models. This Study finds that the state space model performs worse than the benchmark. The vector autoregression model performs better than the benchmark only in the one-step forecast. These results indicate that incorporating preliminary data may not be useful in forecasting the revised data.

Suggested Citation

  • Sucharita Ghosh & Donald Lien, 2001. "Forecasting with preliminary data: a comparison of two methods," Applied Economics, Taylor & Francis Journals, vol. 33(6), pages 721-726.
  • Handle: RePEc:taf:applec:v:33:y:2001:i:6:p:721-726
    DOI: 10.1080/00036840122370

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Dickey, David A & Fuller, Wayne A, 1981. "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root," Econometrica, Econometric Society, vol. 49(4), pages 1057-1072, June.
    2. Doornik, Jurgen A & Hendry, David F & Nielsen, Bent, 1998. " Inference in Cointegrating Models: UK M1 Revisited," Journal of Economic Surveys, Wiley Blackwell, vol. 12(5), pages 533-572, December.
    3. Nielsen, Bent & Rahbek, Anders, 2000. " Similarity Issues in Cointegration Analysis," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 62(1), pages 5-22, February.
    4. Johansen, Soren, 1995. "Likelihood-Based Inference in Cointegrated Vector Autoregressive Models," OUP Catalogue, Oxford University Press, number 9780198774501.
    5. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 39(3), pages 106-135.
    6. Banerjee, Anindya & Dolado, Juan J. & Galbraith, John W. & Hendry, David, 1993. "Co-integration, Error Correction, and the Econometric Analysis of Non-Stationary Data," OUP Catalogue, Oxford University Press, number 9780198288107.
    7. Johansen, Soren, 1988. "Statistical analysis of cointegration vectors," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 231-254.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:applec:v:33:y:2001:i:6:p:721-726. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.