IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v39y2025i7d10.1007_s11269-024-03961-2.html
   My bibliography  Save this article

Developing a Risk Management Framework for Agricultural Water Systems Using Fuzzy Dynamic Bayesian Networks and Decision-Making Models

Author

Listed:
  • Atiyeh Bozorgi

    (Macquarie University)

  • Abbas Roozbahani

    (Norwegian University of Life Sciences (NMBU))

  • Seied Mehdy Hashemy Shahdany

    (University of Tehran)

  • Rouzbeh Abbassi

    (Macquarie University)

Abstract

Given the various natural and human-caused hazards that threaten the agricultural water distribution process from the main source to farms, establishing a framework to analyze these risks is crucial. This study aims to develop an intelligent risk management framework to help stakeholders devise long-term and sustainable solutions for managing agricultural water systems. First, we developed a Fuzzy Dynamic Bayesian Network (FDBN) model for multi-hazard risk assessment, taking into account the temporal causal interactions between parameters and incorporating fuzzy theory. Next, we defined several risk management scenarios across structural, non-structural, automated control, and integrated methods. These scenarios were implemented in the FDBN model to mitigate the risks associated with the system. Various economic, social, environmental, and technical criteria were considered, and scenarios were ranked using the WASPAS, TOPSIS, and MultiMoora methods. The Copeland approach was used to combine the ranking results. The results showed that automated scenarios, specifically Model Predictive Control (MPC) and Proportional-Integral (PI) controllers, could reduce the system's risk by 11.4% and 9.8%, respectively, and were ranked the highest. The findings of this study and the proposed framework can assist operators in the sustainable planning and management of water systems in light of anticipated threats.

Suggested Citation

  • Atiyeh Bozorgi & Abbas Roozbahani & Seied Mehdy Hashemy Shahdany & Rouzbeh Abbassi, 2025. "Developing a Risk Management Framework for Agricultural Water Systems Using Fuzzy Dynamic Bayesian Networks and Decision-Making Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 39(7), pages 3577-3599, May.
  • Handle: RePEc:spr:waterr:v:39:y:2025:i:7:d:10.1007_s11269-024-03961-2
    DOI: 10.1007/s11269-024-03961-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-024-03961-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-024-03961-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hashemy Shahdany, S. Mehdy & Firoozfar, Alireza & Maestre, J.M. & Mallakpour, Iman & Taghvaeian, Saleh & Karimi, Poolad, 2018. "Operational performance improvements in irrigation canals to overcome groundwater overexploitation," Agricultural Water Management, Elsevier, vol. 204(C), pages 234-246.
    2. Zhiqiang Liu & Wenbo Zhu & Hongzhou Zhang & Shengjin Wang & Lu Fang & Weijun Hong & Hua Shao & Guopeng Wang, 2020. "Reliability evaluation of dynamic face recognition systems based on improved Fuzzy Dynamic Bayesian Network," International Journal of Distributed Sensor Networks, , vol. 16(3), pages 15501477209, March.
    3. Karimi, Poolad & Qureshi, Asad Sarwar & Bahramloo, Reza & Molden, David, 2012. "Reducing carbon emissions through improved irrigation and groundwater management: A case study from Iran," Agricultural Water Management, Elsevier, vol. 108(C), pages 52-60.
    4. Hamed Taherdoost, 2017. "Decision Making Using the Analytic Hierarchy Process (AHP); A Step by Step Approach," Post-Print hal-02557320, HAL.
    5. Torres, Jacob M. & Brumbelow, Kelly & Guikema, Seth D., 2009. "Risk classification and uncertainty propagation for virtual water distribution systems," Reliability Engineering and System Safety, Elsevier, vol. 94(8), pages 1259-1273.
    6. Atiyeh Bozorgi & Abbas Roozbahani & Seied Mehdy Hashemy Shahdany & Rouzbeh Abbassi, 2021. "Development of Multi-Hazard Risk Assessment Model for Agricultural Water Supply and Distribution Systems Using Bayesian Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(10), pages 3139-3159, August.
    7. Zhiqiang Liu & Hongzhou Zhang & Shengjin Wang & Weijun Hong & Jianhui Ma & Yanfeng He, 2020. "Reliability Evaluation of Public Security Face Recognition System Based on Continuous Bayesian Network," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-9, May.
    8. Saeedeh Abedzadeh & Abbas Roozbahani & Ali Heidari, 2020. "Risk Assessment of Water Resources Development Plans Using Fuzzy Fault Tree Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(8), pages 2549-2569, June.
    9. Javad Shafiee Neyestanak & Abbas Roozbahani, 2021. "Comprehensive Risk Assessment of Urban Wastewater Reuse in Water Supply Alternatives Using Hybrid Bayesian Network Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(14), pages 5049-5072, November.
    10. I. Nalbantis & G. Tsakiris, 2009. "Assessment of Hydrological Drought Revisited," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(5), pages 881-897, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Atiyeh Bozorgi & Abbas Roozbahani & Seied Mehdy Hashemy Shahdany & Rouzbeh Abbassi, 2021. "Development of Multi-Hazard Risk Assessment Model for Agricultural Water Supply and Distribution Systems Using Bayesian Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(10), pages 3139-3159, August.
    2. Razieh Haddad & Sajad Najafi Marghmaleki & Hamid Kardan Moghaddam & Mehdi Mofidi & Mohammad Mirzavand & Saman Javadi, 2025. "Improving the management of agricultural water resources to provide Gavkhuni wetland ecological water right in Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(2), pages 3549-3572, February.
    3. Jamalnia, Aboozar & Gong, Yu & Govindan, Kannan & Bourlakis, Michael & Mangla, Sachin Kumar, 2023. "A decision support system for selection and risk management of sustainability governance approaches in multi-tier supply chain," International Journal of Production Economics, Elsevier, vol. 264(C).
    4. Nazemi, Neda & Foley, Rider W. & Louis, Garrick & Keeler, Lauren Withycombe, 2020. "Divergent agricultural water governance scenarios: The case of Zayanderud basin, Iran," Agricultural Water Management, Elsevier, vol. 229(C).
    5. Rong Gan & Shuqian Gu & Xiaoxia Tong & Jinqiang Lu & Hui Tang, 2024. "A nonparametric standardized runoff index for characterizing hydrological drought in the Shaying River Basin, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(3), pages 2233-2253, February.
    6. Javad Bazrafshan & Somayeh Hejabi & Jaber Rahimi, 2014. "Drought Monitoring Using the Multivariate Standardized Precipitation Index (MSPI)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(4), pages 1045-1060, March.
    7. Dimitrios Myronidis & Konstantinos Ioannou & Dimitrios Fotakis & Gerald Dörflinger, 2018. "Streamflow and Hydrological Drought Trend Analysis and Forecasting in Cyprus," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(5), pages 1759-1776, March.
    8. Konstantinos Spiliotis & Konstantinos Voudouris & Harris Vangelis & Mike Spiliotis, 2025. "Analysis of Annual Drought Episodes Using Complex Networks," Sustainability, MDPI, vol. 17(4), pages 1-17, February.
    9. Peng Qi & Y. Jun Xu & Guodong Wang, 2020. "Quantifying the Individual Contributions of Climate Change, Dam Construction, and Land Use/Land Cover Change to Hydrological Drought in a Marshy River," Sustainability, MDPI, vol. 12(9), pages 1-16, May.
    10. Asma Fahim & Qingmei Tan & Bushra Naz & Qurat ul Ain & Sibghat Ullah Bazai, 2021. "Sustainable Higher Education Reform Quality Assessment Using SWOT Analysis with Integration of AHP and Entropy Models: A Case Study of Morocco," Sustainability, MDPI, vol. 13(8), pages 1-19, April.
    11. Enes Gul & Efthymia Staiou & Mir Jafar Sadegh Safari & Babak Vaheddoost, 2023. "Enhancing Meteorological Drought Modeling Accuracy Using Hybrid Boost Regression Models: A Case Study from the Aegean Region, Türkiye," Sustainability, MDPI, vol. 15(15), pages 1-17, July.
    12. Mohammad Nazeri Tahroudi & Yousef Ramezani & Carlo De Michele & Rasoul Mirabbasi, 2020. "A New Method for Joint Frequency Analysis of Modified Precipitation Anomaly Percentage and Streamflow Drought Index Based on the Conditional Density of Copula Functions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(13), pages 4217-4231, October.
    13. Tazen Fowé & Roland Yonaba & Lawani Adjadi Mounirou & Etienne Ouédraogo & Boubacar Ibrahim & Dial Niang & Harouna Karambiri & Hamma Yacouba, 2023. "From meteorological to hydrological drought: a case study using standardized indices in the Nakanbe River Basin, Burkina Faso," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 119(3), pages 1941-1965, December.
    14. Zahra Fahimirad & Nazanin Shahkarami, 2021. "The Impact of Climate Change on Hydro-Meteorological Droughts Using Copula Functions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 3969-3993, September.
    15. Zhao, Rongqin & Liu, Ying & Tian, Mengmeng & Ding, Minglei & Cao, Lianhai & Zhang, Zhanping & Chuai, Xiaowei & Xiao, Liangang & Yao, Lunguang, 2018. "Impacts of water and land resources exploitation on agricultural carbon emissions: The water-land-energy-carbon nexus," Land Use Policy, Elsevier, vol. 72(C), pages 480-492.
    16. Beshavard, Mahdi & Adib, Arash & Ashrafi, Seyed Mohammad & Kisi, Ozgur, 2022. "Establishing effective warning storage to derive optimal reservoir operation policy based on the drought condition," Agricultural Water Management, Elsevier, vol. 274(C).
    17. Dilayda Soylu Pekpostalci & Rifat Tur & Ali Danandeh Mehr & Mohammad Amin Vazifekhah Ghaffari & Dominika Dąbrowska & Vahid Nourani, 2023. "Drought Monitoring and Forecasting across Turkey: A Contemporary Review," Sustainability, MDPI, vol. 15(7), pages 1-23, March.
    18. Ren, Hourui & Liu, Bin & Zhang, Zirui & Li, Fuxin & Pan, Ke & Zhou, Zhongli & Xu, Xiaoshuang, 2022. "A water-energy-food-carbon nexus optimization model for sustainable agricultural development in the Yellow River Basin under uncertainty," Applied Energy, Elsevier, vol. 326(C).
    19. Weijing Ma & Lihong Meng & Feili Wei & Christian Opp & Dewei Yang, 2020. "Sensitive Factors Identification and Scenario Simulation of Water Demand in the Arid Agricultural Area Based on the Socio-Economic-Environment Nexus," Sustainability, MDPI, vol. 12(10), pages 1-19, May.
    20. Xueyou Zhang & Junfei Chen & Chong Yu & Qian Wang & Tonghui Ding, 2024. "Emergency risk assessment of sudden water pollution in South-to-North Water Diversion Project in China based on driving force–pressure–state–impact–response (DPSIR) model and variable fuzzy set," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(8), pages 20233-20253, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:39:y:2025:i:7:d:10.1007_s11269-024-03961-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.