IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v38y2024i6d10.1007_s11269-024-03756-5.html
   My bibliography  Save this article

Times Series Forecasting of Monthly Rainfall using Seasonal Auto Regressive Integrated Moving Average with EXogenous Variables (SARIMAX) Model

Author

Listed:
  • Shahenaz Mulla

    (India Meteorological Department (IMD)
    University of Allahabad)

  • Chaitanya B. Pande

    (Al-Ayen University
    Indian Institute of Tropical Meteorology)

  • Sudhir K. Singh

    (K. Banerjee Centre of Atmospheric and Ocean Studies, University of Allahabad)

Abstract

In this study, the monthly rainfall time series forecasting was investigated based on the effectiveness of the Seasonal Auto Regressive Integrated Moving Average with EXogenous variables (SARIMAX) model in the coastal area of Phaltan, taluka. Rainfall forecasting is so much helpful to crops and disaster planning and development during monsoon season. The performance of model was assessed using various statistical metrics such as coefficient of determination (R2), and root mean squared error (RMSE). In this study, we have used multi-dimensional components as inputs in the SARIMAX model for prediction of monthly rainfall. In this work, we have tested two models such as first SARIMAX model orders are (1, 0, 1) and (0, 1, 0, 12), while the second model had orders of (1, 1, 1) and (1, 1, 1, 12). The results of two models have been compared and the performance of model show that the first model outperformed on the rainfall forecasting. The RMSE and R2 performance are 54.54 and 0.91 of first model, respectively, while the second model accuracy is RMSE of 71.12 and an R2 of 0.81. Hence best SARIMAX model has been used for forecasting of monthly time series rainfall from 2020 to 2025 for study area. The results of rainfall data analysis of climatic data are valuable for understanding the variations in global climate change.

Suggested Citation

  • Shahenaz Mulla & Chaitanya B. Pande & Sudhir K. Singh, 2024. "Times Series Forecasting of Monthly Rainfall using Seasonal Auto Regressive Integrated Moving Average with EXogenous Variables (SARIMAX) Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(6), pages 1825-1846, April.
  • Handle: RePEc:spr:waterr:v:38:y:2024:i:6:d:10.1007_s11269-024-03756-5
    DOI: 10.1007/s11269-024-03756-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-024-03756-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-024-03756-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Palanisamy Manigandan & MD Shabbir Alam & Majed Alharthi & Uzma Khan & Kuppusamy Alagirisamy & Duraisamy Pachiyappan & Abdul Rehman, 2021. "Forecasting Natural Gas Production and Consumption in United States-Evidence from SARIMA and SARIMAX Models," Energies, MDPI, vol. 14(19), pages 1-17, September.
    2. Ming Wei & Xue-yi You, 2022. "Monthly rainfall forecasting by a hybrid neural network of discrete wavelet transformation and deep learning," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(11), pages 4003-4018, September.
    3. Prabal Das & D. A. Sachindra & Kironmala Chanda, 2022. "Machine Learning-Based Rainfall Forecasting with Multiple Non-Linear Feature Selection Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(15), pages 6043-6071, December.
    4. J. Drisya & D. Sathish Kumar, 2023. "Evaluation of the drought management measures in a semi-arid agricultural watershed," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(1), pages 811-833, January.
    5. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    6. Poornima Unnikrishnan & V. Jothiprakash, 2020. "Hybrid SSA-ARIMA-ANN Model for Forecasting Daily Rainfall," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(11), pages 3609-3623, September.
    7. A. I. McLeod & W. K. Li, 1983. "Diagnostic Checking Arma Time Series Models Using Squared‐Residual Autocorrelations," Journal of Time Series Analysis, Wiley Blackwell, vol. 4(4), pages 269-273, July.
    8. Fang, Tingting & Lahdelma, Risto, 2016. "Evaluation of a multiple linear regression model and SARIMA model in forecasting heat demand for district heating system," Applied Energy, Elsevier, vol. 179(C), pages 544-552.
    9. Xiaoliang Xie & Bingqi Xie & Jiaqi Cheng & Qi Chu & Thomas Dooling, 2021. "A simple Monte Carlo method for estimating the chance of a cyclone impact," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(3), pages 2573-2582, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rohit & Kamal Kumar & Reeta Bhardwaj & Gagandeep Kaur, 2025. "Rainfall Analysis using FUCOM Weighted Logarithmic Distance Measure Based on Probabilistic Dual Hesitant Preference Values," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 39(1), pages 207-226, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Töppel, Jannick & Tränkler, Timm, 2019. "Modeling energy efficiency insurances and energy performance contracts for a quantitative comparison of risk mitigation potential," Energy Economics, Elsevier, vol. 80(C), pages 842-859.
    2. Eduardo Rosas Rojas & Mónica C. Mimbrera Delgado, 2018. "Inflación y volatilidad cambiaria en México (1969-2017)," Ensayos de Economía 17297, Universidad Nacional de Colombia Sede Medellín.
    3. Diego J Pedregal, 2019. "Time series analysis and forecasting with ECOTOOL," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-23, October.
    4. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020. "Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss," Journal of International Money and Finance, Elsevier, vol. 104(C).
    5. Nahapetyan Yervand, 2019. "The benefits of the Velvet Revolution in Armenia: Estimation of the short-term economic gains using deep neural networks," Central European Economic Journal, Sciendo, vol. 6(53), pages 286-303, January.
    6. Alagidede, Paul & Panagiotidis, Theodore, 2009. "Modelling stock returns in Africa's emerging equity markets," International Review of Financial Analysis, Elsevier, vol. 18(1-2), pages 1-11, March.
    7. Liu, Xiaolei & Lin, Zi & Feng, Ziming, 2021. "Short-term offshore wind speed forecast by seasonal ARIMA - A comparison against GRU and LSTM," Energy, Elsevier, vol. 227(C).
    8. Prabal Das & D. A. Sachindra & Kironmala Chanda, 2022. "Machine Learning-Based Rainfall Forecasting with Multiple Non-Linear Feature Selection Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(15), pages 6043-6071, December.
    9. Chen, Shyh-Wei & Xie, Zixiong, 2015. "Testing for current account sustainability under assumptions of smooth break and nonlinearity," International Review of Economics & Finance, Elsevier, vol. 38(C), pages 142-156.
    10. Aunedi, Marko & Pantaleo, Antonio Marco & Kuriyan, Kamal & Strbac, Goran & Shah, Nilay, 2020. "Modelling of national and local interactions between heat and electricity networks in low-carbon energy systems," Applied Energy, Elsevier, vol. 276(C).
    11. de Lima, Pedro J. F., 1997. "On the robustness of nonlinearity tests to moment condition failure," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 251-280.
    12. Dombi, József & Jónás, Tamás & Tóth, Zsuzsanna Eszter, 2018. "Modeling and long-term forecasting demand in spare parts logistics businesses," International Journal of Production Economics, Elsevier, vol. 201(C), pages 1-17.
    13. Eleni Constantinou & Robert Georgiades & Avo Kazandjian & George Kouretas, 2005. "Mean and variance causality between the Cyprus Stock Exchange and major equity markets," Working Papers 0501, University of Crete, Department of Economics.
    14. Amita Gajewar & Gagan Bansal, 2016. "Revenue Forecasting for Enterprise Products," Papers 1701.06624, arXiv.org.
    15. Abdullah Addas, 2023. "Understanding the Relationship between Urban Biophysical Composition and Land Surface Temperature in a Hot Desert Megacity (Saudi Arabia)," IJERPH, MDPI, vol. 20(6), pages 1-16, March.
    16. Tao XIONG & Chongguang LI & Yukun BAO, 2017. "An improved EEMD-based hybrid approach for the short-term forecasting of hog price in China," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 63(3), pages 136-148.
    17. Pieter van der Spek & Chris Verhoef, 2014. "Balancing Time‐to‐Market and Quality in Embedded Systems," Systems Engineering, John Wiley & Sons, vol. 17(2), pages 166-192, June.
    18. Hyndman, Rob J. & Ahmed, Roman A. & Athanasopoulos, George & Shang, Han Lin, 2011. "Optimal combination forecasts for hierarchical time series," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2579-2589, September.
    19. Baur, Dirk & Jung, Robert C., 2006. "Return and volatility linkages between the US and the German stock market," Journal of International Money and Finance, Elsevier, vol. 25(4), pages 598-613, June.
    20. Kourentzes, Nikolaos & Petropoulos, Fotios & Trapero, Juan R., 2014. "Improving forecasting by estimating time series structural components across multiple frequencies," International Journal of Forecasting, Elsevier, vol. 30(2), pages 291-302.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:38:y:2024:i:6:d:10.1007_s11269-024-03756-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.