IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0221238.html
   My bibliography  Save this article

Time series analysis and forecasting with ECOTOOL

Author

Listed:
  • Diego J Pedregal

Abstract

This paper presents ECOTOOL, a new free MATLAB toolbox that embodies several routines for identification, validation and forecasting of dynamic models. The toolbox includes a wide range of exploratory, descriptive and diagnostic statistical tools with visual support, designed in easy-to-use Graphical User Interfaces. It also incorporates complex automatic procedures for identification, exact maximum likelihood estimation and outlier detection for many types of models available in the literature (like multi-seasonal ARIMA models, transfer functions, Exponential Smoothing, Unobserved Components, VARX). ECOTOOL is the outcome of a long period of programming effort with the aim of producing a user friendly toolkit such that, just a few lines of code written in MATLAB are able to perform a comprehensive analysis of time series. The toolbox is supplied with an in-depth documentation system and online help and is available on the internet. The paper describes the main functionalities of the toolbox, and its power is shown working on several real examples.

Suggested Citation

  • Diego J Pedregal, 2019. "Time series analysis and forecasting with ECOTOOL," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-23, October.
  • Handle: RePEc:plo:pone00:0221238
    DOI: 10.1371/journal.pone.0221238
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0221238
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0221238&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0221238?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Johansen, Soren, 1991. "Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models," Econometrica, Econometric Society, vol. 59(6), pages 1551-1580, November.
    2. Selukar, Rajesh, 2011. "State Space Modeling Using SAS," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 41(i12).
    3. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    4. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178, Decembrie.
    5. Laurence Broze & Guy Melard, 1990. "Exponential smoothing: estimation by maximum likelihood," ULB Institutional Repository 2013/13716, ULB -- Universite Libre de Bruxelles.
    6. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    7. Van den Bossche, Filip A. M., 2011. "Fitting State Space Models with EViews," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 41(i08).
    8. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    9. Pena, Daniel & Rodriguez, Julio, 2005. "Detecting nonlinearity in time series by model selection criteria," International Journal of Forecasting, Elsevier, vol. 21(4), pages 731-748.
    10. Drukker, David M. & Gates, Richard B., 2011. "State Space Methods in Stata," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 41(i10).
    11. A. I. McLeod & W. K. Li, 1983. "Diagnostic Checking Arma Time Series Models Using Squared‐Residual Autocorrelations," Journal of Time Series Analysis, Wiley Blackwell, vol. 4(4), pages 269-273, July.
    12. Hyndman, Rob J. & Koehler, Anne B., 2006. "Another look at measures of forecast accuracy," International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
    13. Bera, Anil K. & Jarque, Carlos M., 1981. "Efficient tests for normality, homoscedasticity and serial independence of regression residuals : Monte Carlo Evidence," Economics Letters, Elsevier, vol. 7(4), pages 313-318.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yelland, Phillip M., 2010. "Bayesian forecasting of parts demand," International Journal of Forecasting, Elsevier, vol. 26(2), pages 374-396, April.
    2. Ziaul Haque Munim & Hans-Joachim Schramm, 0. "Forecasting container freight rates for major trade routes: a comparison of artificial neural networks and conventional models," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 0, pages 1-18.
    3. Sbrana, Giacomo & Silvestrini, Andrea, 2022. "Random coefficient state-space model: Estimation and performance in M3–M4 competitions," International Journal of Forecasting, Elsevier, vol. 38(1), pages 352-366.
    4. Ling Tang & Chengyuan Zhang & Tingfei Li & Ling Li, 2021. "A novel BEMD-based method for forecasting tourist volume with search engine data," Tourism Economics, , vol. 27(5), pages 1015-1038, August.
    5. Franses,Philip Hans & Dijk,Dick van & Opschoor,Anne, 2014. "Time Series Models for Business and Economic Forecasting," Cambridge Books, Cambridge University Press, number 9780521520911, Enero-Abr.
    6. Kunze, Frederik & Wegener, Christoph & Bizer, Kilian & Spiwoks, Markus, 2017. "Forecasting European interest rates in times of financial crisis – What insights do we get from international survey forecasts?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 48(C), pages 192-205.
    7. Ziaul Haque Munim & Hans-Joachim Schramm, 2021. "Forecasting container freight rates for major trade routes: a comparison of artificial neural networks and conventional models," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 23(2), pages 310-327, June.
    8. Kunze, Frederik, 2017. "Predicting exchange rates in Asia: New insights on the accuracy of survey forecasts," University of Göttingen Working Papers in Economics 326, University of Goettingen, Department of Economics.
    9. Drachal, Krzysztof, 2021. "Forecasting crude oil real prices with averaging time-varying VAR models," Resources Policy, Elsevier, vol. 74(C).
    10. Niels Haldrup & Carsten P. T. Rosenskjold, 2019. "A Parametric Factor Model of the Term Structure of Mortality," Econometrics, MDPI, vol. 7(1), pages 1-22, March.
    11. Makridakis, Spyros & Hyndman, Rob J. & Petropoulos, Fotios, 2020. "Forecasting in social settings: The state of the art," International Journal of Forecasting, Elsevier, vol. 36(1), pages 15-28.
    12. Ulrich Gunter, 2021. "Improving Hotel Room Demand Forecasts for Vienna across Hotel Classes and Forecast Horizons: Single Models and Combination Techniques Based on Encompassing Tests," Forecasting, MDPI, vol. 3(4), pages 1-36, November.
    13. Eckert, Florian & Hyndman, Rob J. & Panagiotelis, Anastasios, 2021. "Forecasting Swiss exports using Bayesian forecast reconciliation," European Journal of Operational Research, Elsevier, vol. 291(2), pages 693-710.
    14. K. Lebedeva, 2015. "An Empirical Analysis of the Russian Financial Markets’ Liquidity and Returns," Review of Business and Economics Studies // Review of Business and Economics Studies, Финансовый Университет // Financial University, vol. 3(3), pages 5-31.
    15. Tuhkuri, Joonas, 2016. "Forecasting Unemployment with Google Searches," ETLA Working Papers 35, The Research Institute of the Finnish Economy.
    16. Krzysztof Drachal, 2022. "Forecasting the Crude Oil Spot Price with Bayesian Symbolic Regression," Energies, MDPI, vol. 16(1), pages 1-29, December.
    17. Rostami-Tabar, Bahman & Ziel, Florian, 2022. "Anticipating special events in Emergency Department forecasting," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1197-1213.
    18. Vadim Kufenko & Niels Geiger, 2016. "Business cycles in the economy and in economics: an econometric analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(1), pages 43-69, April.
    19. Ozdemir, Zeynel Abidin & Cakan, Esin, 2007. "Non-linear dynamic linkages in the international stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 377(1), pages 173-180.
    20. de Silva, Ashton, 2008. "Forecasting macroeconomic variables using a structural state space model," MPRA Paper 11060, University Library of Munich, Germany.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0221238. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.