IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v35y2021i9d10.1007_s11269-021-02879-3.html
   My bibliography  Save this article

An Ensemble Modeling Approach to Forecast Daily Reservoir Inflow Using Bidirectional Long- and Short-Term Memory (Bi-LSTM), Variational Mode Decomposition (VMD), and Energy Entropy Method

Author

Listed:
  • Fugang LI

    (Sichuan University
    Sichuan University)

  • Guangwen MA

    (Sichuan University
    Sichuan University)

  • Shijun CHEN

    (Sichuan University
    Sichuan University)

  • Weibin HUANG

    (Sichuan University
    Sichuan University)

Abstract

Daily inflow forecasts provide important decision support for the operations and management of reservoirs. Accurate and reliable forecasting plays an important role in the optimal management of water resources. Numerous studies have shown that decomposition integration models have good prediction capacity. Considering the nonlinearity and unsteady state of daily incoming flow data, a hybrid model of adaptive variational mode decomposition (VMD) and bidirectional long- and short-term memory (Bi-LSTM) based on energy entropy was developed for daily inflow forecast. The model was analyzed using the mean absolute error (MAE), the root means square error (RMSE), Nash–Sutcliffe efficiency coefficient (NSE), and correlation coefficient (r). A historical daily inflow series of the Baozhusi Hydropower Station, China, is investigated by the proposed VMD-BiLSTM with hybrid models. For comparison, BP, GRNN, ELMAN, SVR, LSTM, Bi-LSTM, EMD-LSTM, and VMD-LSTM, were adopted and analyzed for evaluation and analyzed. We found that the proposed model, with MAE = 38.965, RMSE = 64.783, and NSE = 95.7%, was superior to the other models. Therefore, the hybrid model is robust and efficient for forecasting highly nonstationary and nonlinear streamflow. It can be used as the preferred data-driven tool to predict the daily inflow flow, which can ensure the safe operation of hydropower stations in reservoirs. As an interdisciplinary field spanning both machine learning and hydrology, daily inflow forecasting can become an important breakthrough in the application of deep learning to hydrology.

Suggested Citation

  • Fugang LI & Guangwen MA & Shijun CHEN & Weibin HUANG, 2021. "An Ensemble Modeling Approach to Forecast Daily Reservoir Inflow Using Bidirectional Long- and Short-Term Memory (Bi-LSTM), Variational Mode Decomposition (VMD), and Energy Entropy Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(9), pages 2941-2963, July.
  • Handle: RePEc:spr:waterr:v:35:y:2021:i:9:d:10.1007_s11269-021-02879-3
    DOI: 10.1007/s11269-021-02879-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-021-02879-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-021-02879-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. V. Ramaswamy & F. Saleh, 2020. "Ensemble Based Forecasting and Optimization Framework to Optimize Releases from Water Supply Reservoirs for Flood Control," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(3), pages 989-1004, February.
    2. Ghoddusi, Hamed & Creamer, Germán G. & Rafizadeh, Nima, 2019. "Machine learning in energy economics and finance: A review," Energy Economics, Elsevier, vol. 81(C), pages 709-727.
    3. Arpita Samanta Santra & Jun-Lin Lin, 2019. "Integrating Long Short-Term Memory and Genetic Algorithm for Short-Term Load Forecasting," Energies, MDPI, vol. 12(11), pages 1-11, May.
    4. Ali Ahani & Mojtaba Shourian & Peiman Rahimi Rad, 2018. "Performance Assessment of the Linear, Nonlinear and Nonparametric Data Driven Models in River Flow Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(2), pages 383-399, January.
    5. Yutao Qi & Zhanao Zhou & Lingling Yang & Yining Quan & Qiguang Miao, 2019. "A Decomposition-Ensemble Learning Model Based on LSTM Neural Network for Daily Reservoir Inflow Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(12), pages 4123-4139, September.
    6. Chen, Li & Zhou, Shuisheng & Ma, Jiajun & Xu, Mingliang, 2021. "Fast kernel k-means clustering using incomplete Cholesky factorization," Applied Mathematics and Computation, Elsevier, vol. 402(C).
    7. Xinxin He & Jungang Luo & Ganggang Zuo & Jiancang Xie, 2019. "Daily Runoff Forecasting Using a Hybrid Model Based on Variational Mode Decomposition and Deep Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(4), pages 1571-1590, March.
    8. Peng, Lu & Liu, Shan & Liu, Rui & Wang, Lin, 2018. "Effective long short-term memory with differential evolution algorithm for electricity price prediction," Energy, Elsevier, vol. 162(C), pages 1301-1314.
    9. Ozgur Kisi & Levent Latifoğlu & Fatma Latifoğlu, 2014. "Investigation of Empirical Mode Decomposition in Forecasting of Hydrological Time Series," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(12), pages 4045-4057, September.
    10. Yin, Juan & Deng, Zhen & Ines, Amor V.M. & Wu, Junbin & Rasu, Eeswaran, 2020. "Forecast of short-term daily reference evapotranspiration under limited meteorological variables using a hybrid bi-directional long short-term memory model (Bi-LSTM)," Agricultural Water Management, Elsevier, vol. 242(C).
    11. Peng, Tian & Zhang, Chu & Zhou, Jianzhong & Nazir, Muhammad Shahzad, 2021. "An integrated framework of Bi-directional long-short term memory (BiLSTM) based on sine cosine algorithm for hourly solar radiation forecasting," Energy, Elsevier, vol. 221(C).
    12. Qian, Zheng & Pei, Yan & Zareipour, Hamidreza & Chen, Niya, 2019. "A review and discussion of decomposition-based hybrid models for wind energy forecasting applications," Applied Energy, Elsevier, vol. 235(C), pages 939-953.
    13. Sinan Jasim Hadi & Mustafa Tombul, 2018. "Forecasting Daily Streamflow for Basins with Different Physical Characteristics through Data-Driven Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(10), pages 3405-3422, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ramtin Moeini & Kamran Nasiri & Seyed Hossein Hosseini, 2024. "Predicting the Water Inflow Into the Dam Reservoir Using the Hybrid Intelligent GP-ANN- NSGA-II Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(11), pages 4137-4159, September.
    2. Huseyin Cagan Kilinc & Sina Apak & Furkan Ozkan & Mahmut Esad Ergin & Adem Yurtsever, 2024. "Multimodal Fusion of Optimized GRU–LSTM with Self-Attention Layer for Hydrological Time Series Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(15), pages 6045-6062, December.
    3. Bao-Jian Li & Guo-Liang Sun & Yan Liu & Wen-Chuan Wang & Xu-Dong Huang, 2022. "Monthly Runoff Forecasting Using Variational Mode Decomposition Coupled with Gray Wolf Optimizer-Based Long Short-term Memory Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(6), pages 2095-2115, April.
    4. Zhong Huang & Linna Li & Guorong Ding, 2023. "A Daily Air Pollutant Concentration Prediction Framework Combining Successive Variational Mode Decomposition and Bidirectional Long Short-Term Memory Network," Sustainability, MDPI, vol. 15(13), pages 1-22, July.
    5. Sheng He & Xuefeng Sang & Junxian Yin & Yang Zheng & Heting Chen, 2023. "Short-term Runoff Prediction Optimization Method Based on BGRU-BP and BLSTM-BP Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(2), pages 747-768, January.
    6. Kang, Yan & Chen, Peiru & Cheng, Xiao & Zhang, Shuo & Song, Songbai, 2022. "Novel hybrid machine learning framework with decomposition–transformation and identification of key modes for estimating reference evapotranspiration," Agricultural Water Management, Elsevier, vol. 273(C).
    7. M. Rajesh & Sachdeva Anishka & Pansari Satyam Viksit & Srivastav Arohi & S. Rehana, 2023. "Improving Short-range Reservoir Inflow Forecasts with Machine Learning Model Combination," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(1), pages 75-90, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ethem Çanakoğlu & Esra Adıyeke, 2020. "Comparison of Electricity Spot Price Modelling and Risk Management Applications," Energies, MDPI, vol. 13(18), pages 1-22, September.
    2. Zhang, Chu & Li, Zhengbo & Ge, Yida & Liu, Qianlong & Suo, Leiming & Song, Shihao & Peng, Tian, 2024. "Enhancing short-term wind speed prediction based on an outlier-robust ensemble deep random vector functional link network with AOA-optimized VMD," Energy, Elsevier, vol. 296(C).
    3. Lu, Peng & Ye, Lin & Zhao, Yongning & Dai, Binhua & Pei, Ming & Tang, Yong, 2021. "Review of meta-heuristic algorithms for wind power prediction: Methodologies, applications and challenges," Applied Energy, Elsevier, vol. 301(C).
    4. Junhao Wu & Zhaocai Wang & Yuan Hu & Sen Tao & Jinghan Dong, 2023. "Runoff Forecasting using Convolutional Neural Networks and optimized Bi-directional Long Short-term Memory," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(2), pages 937-953, January.
    5. Neshat, Mehdi & Nezhad, Meysam Majidi & Mirjalili, Seyedali & Garcia, Davide Astiaso & Dahlquist, Erik & Gandomi, Amir H., 2023. "Short-term solar radiation forecasting using hybrid deep residual learning and gated LSTM recurrent network with differential covariance matrix adaptation evolution strategy," Energy, Elsevier, vol. 278(C).
    6. Richter, Lucas & Lehna, Malte & Marchand, Sophie & Scholz, Christoph & Dreher, Alexander & Klaiber, Stefan & Lenk, Steve, 2022. "Artificial Intelligence for Electricity Supply Chain automation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    7. Liyang Tang, 2020. "Application of Nonlinear Autoregressive with Exogenous Input (NARX) neural network in macroeconomic forecasting, national goal setting and global competitiveness assessment," Papers 2005.08735, arXiv.org.
    8. Li, Zheng & Zhou, Bo & Hensher, David A., 2022. "Forecasting automobile gasoline demand in Australia using machine learning-based regression," Energy, Elsevier, vol. 239(PD).
    9. Mario Figueiredo & Yuri F. Saporito, 2023. "Forecasting the term structure of commodities future prices using machine learning," Digital Finance, Springer, vol. 5(1), pages 57-90, March.
    10. Fraunholz, Christoph & Kraft, Emil & Keles, Dogan & Fichtner, Wolf, 2021. "Advanced price forecasting in agent-based electricity market simulation," Applied Energy, Elsevier, vol. 290(C).
    11. Fang-Fang Li & Han Cao & Chun-Feng Hao & Jun Qiu, 2021. "Daily Streamflow Forecasting Based on Flow Pattern Recognition," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(13), pages 4601-4620, October.
    12. Ma, Zhengjing & Mei, Gang, 2022. "A hybrid attention-based deep learning approach for wind power prediction," Applied Energy, Elsevier, vol. 323(C).
    13. Fahad Radhi Alharbi & Denes Csala, 2021. "Wind Speed and Solar Irradiance Prediction Using a Bidirectional Long Short-Term Memory Model Based on Neural Networks," Energies, MDPI, vol. 14(20), pages 1-22, October.
    14. Jen-Yu Lee & Tien-Thinh Nguyen & Hong-Giang Nguyen & Jen-Yao Lee, 2022. "Towards Predictive Crude Oil Purchase: A Case Study in the USA and Europe," Energies, MDPI, vol. 15(11), pages 1-15, May.
    15. Xinyu Wu & Yuan Lei & Chuntian Cheng & Qilin Ying, 2023. "An Optimal Operation Method for Parallel Hydropower Systems Combining Reservoir Level Control and Power Distribution," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(4), pages 1729-1745, March.
    16. Tao XIONG & Chongguang LI & Yukun BAO, 2017. "An improved EEMD-based hybrid approach for the short-term forecasting of hog price in China," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 63(3), pages 136-148.
    17. Sarmad Dashti Latif & Ali Najah Ahmed, 2023. "Streamflow Prediction Utilizing Deep Learning and Machine Learning Algorithms for Sustainable Water Supply Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(8), pages 3227-3241, June.
    18. Xue-hua Zhao & Xu Chen, 2015. "Auto Regressive and Ensemble Empirical Mode Decomposition Hybrid Model for Annual Runoff Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2913-2926, June.
    19. Yuzgec, Ugur & Dokur, Emrah & Balci, Mehmet, 2024. "A novel hybrid model based on Empirical Mode Decomposition and Echo State Network for wind power forecasting," Energy, Elsevier, vol. 300(C).
    20. Kim, Jong-Min & Kim, Dong H. & Jung, Hojin, 2021. "Applications of machine learning for corporate bond yield spread forecasting," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:35:y:2021:i:9:d:10.1007_s11269-021-02879-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.