IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v38y2024i6d10.1007_s11269-023-03731-6.html
   My bibliography  Save this article

Evaluation and Interpretation of Runoff Forecasting Models Based on Hybrid Deep Neural Networks

Author

Listed:
  • Xin Yang

    (Huazhong University of Science and Technology
    Hubei Key Laboratory of Digital Valley Science and Technology)

  • Jianzhong Zhou

    (Huazhong University of Science and Technology
    Hubei Key Laboratory of Digital Valley Science and Technology)

  • Qianyi Zhang

    (Huazhong University of Science and Technology
    Hubei Key Laboratory of Digital Valley Science and Technology)

  • Zhanxin Xu

    (Huazhong University of Science and Technology
    Hubei Key Laboratory of Digital Valley Science and Technology)

  • Jianyun Zhang

    (Nanjing Hydraulic Research Institute)

Abstract

Deep neural networks has been widely used in runoff forecasting and has achieved better performance than of conceptual hydrological models. However, most existing studies only use a single type of neural network model to build runoff forecasting models, which fails to fully explain the role of different types of neural networks in runoff forecasting. In this study, the convolutional neural networks (CNN), long short-term memory (LSTM) networks, and convolutional LSTM (ConvLSTM) were used to design a hybrid deep neural network model (HydroDL) for runoff prediction by referring to the structure of the conceptual hydrological model. The proposed model was used to predict the daily runoff at the Xinlong and Daofu hydrological stations in the upper reaches of the Yalong River, and several other runoff prediction models based on neural networks and conceptual hydrological models were developed for comparative study. Daily scale meteorological, hydrological and topographic data from January 2011 to December 2020 were used to train and validate the above models. The results show that: (1) the proposed HydroDL model has higher prediction accuracy and more stable prediction performance than runoff prediction models based on a single type of neural network. (2) effects of different parts in the HydroDL model are distinct, among which the terrain feature extraction and runoff conversion has the most significant and least significant effect, respectively, on improving the forecast results.

Suggested Citation

  • Xin Yang & Jianzhong Zhou & Qianyi Zhang & Zhanxin Xu & Jianyun Zhang, 2024. "Evaluation and Interpretation of Runoff Forecasting Models Based on Hybrid Deep Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(6), pages 1987-2013, April.
  • Handle: RePEc:spr:waterr:v:38:y:2024:i:6:d:10.1007_s11269-023-03731-6
    DOI: 10.1007/s11269-023-03731-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-023-03731-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-023-03731-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fugang LI & Guangwen MA & Shijun CHEN & Weibin HUANG, 2021. "An Ensemble Modeling Approach to Forecast Daily Reservoir Inflow Using Bidirectional Long- and Short-Term Memory (Bi-LSTM), Variational Mode Decomposition (VMD), and Energy Entropy Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(9), pages 2941-2963, July.
    2. Kim, Tae-Young & Cho, Sung-Bae, 2019. "Predicting residential energy consumption using CNN-LSTM neural networks," Energy, Elsevier, vol. 182(C), pages 72-81.
    3. Xinxin He & Jungang Luo & Ganggang Zuo & Jiancang Xie, 2019. "Daily Runoff Forecasting Using a Hybrid Model Based on Variational Mode Decomposition and Deep Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(4), pages 1571-1590, March.
    4. Xingsheng Shu & Wei Ding & Yong Peng & Ziru Wang & Jian Wu & Min Li, 2021. "Monthly Streamflow Forecasting Using Convolutional Neural Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(15), pages 5089-5104, December.
    5. Junhao Wu & Zhaocai Wang & Yuan Hu & Sen Tao & Jinghan Dong, 2023. "Runoff Forecasting using Convolutional Neural Networks and optimized Bi-directional Long Short-term Memory," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(2), pages 937-953, January.
    6. Yongqi Liu & Lei Ye & Hui Qin & Shuo Ouyang & Zhendong Zhang & Jianzhong Zhou, 2019. "Middle and Long-Term Runoff Probabilistic Forecasting Based on Gaussian Mixture Regression," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(5), pages 1785-1799, March.
    7. Mohammed Achite & Gokmen Ceribasi & Ahmet Iyad Ceyhunlu & Andrzej Wałęga & Tommaso Caloiero, 2021. "The Innovative Polygon Trend Analysis (IPTA) as a Simple Qualitative Method to Detect Changes in Environment—Example Detecting Trends of the Total Monthly Precipitation in Semiarid Area," Sustainability, MDPI, vol. 13(22), pages 1-17, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bao-Jian Li & Guo-Liang Sun & Yan Liu & Wen-Chuan Wang & Xu-Dong Huang, 2022. "Monthly Runoff Forecasting Using Variational Mode Decomposition Coupled with Gray Wolf Optimizer-Based Long Short-term Memory Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(6), pages 2095-2115, April.
    2. Wenxin Xu & Jie Chen & Xunchang J. Zhang, 2022. "Scale Effects of the Monthly Streamflow Prediction Using a State-of-the-art Deep Learning Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3609-3625, August.
    3. Abubakar Ahmad Musa & Adamu Hussaini & Weixian Liao & Fan Liang & Wei Yu, 2023. "Deep Neural Networks for Spatial-Temporal Cyber-Physical Systems: A Survey," Future Internet, MDPI, vol. 15(6), pages 1-24, May.
    4. Lan, Puzhe & Han, Dong & Xu, Xiaoyuan & Yan, Zheng & Ren, Xijun & Xia, Shiwei, 2022. "Data-driven state estimation of integrated electric-gas energy system," Energy, Elsevier, vol. 252(C).
    5. Ijaz Ul Haq & Amin Ullah & Samee Ullah Khan & Noman Khan & Mi Young Lee & Seungmin Rho & Sung Wook Baik, 2021. "Sequential Learning-Based Energy Consumption Prediction Model for Residential and Commercial Sectors," Mathematics, MDPI, vol. 9(6), pages 1-17, March.
    6. Lu, Yakai & Tian, Zhe & Zhou, Ruoyu & Liu, Wenjing, 2021. "A general transfer learning-based framework for thermal load prediction in regional energy system," Energy, Elsevier, vol. 217(C).
    7. Sun, Hongchang & Niu, Yanlei & Li, Chengdong & Zhou, Changgeng & Zhai, Wenwen & Chen, Zhe & Wu, Hao & Niu, Lanqiang, 2022. "Energy consumption optimization of building air conditioning system via combining the parallel temporal convolutional neural network and adaptive opposition-learning chimp algorithm," Energy, Elsevier, vol. 259(C).
    8. Luo, X.J. & Oyedele, Lukumon O. & Ajayi, Anuoluwapo O. & Akinade, Olugbenga O. & Owolabi, Hakeem A. & Ahmed, Ashraf, 2020. "Feature extraction and genetic algorithm enhanced adaptive deep neural network for energy consumption prediction in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    9. Namrye Son, 2021. "Comparison of the Deep Learning Performance for Short-Term Power Load Forecasting," Sustainability, MDPI, vol. 13(22), pages 1-25, November.
    10. Lili Wang & Yanlong Guo & Manhong Fan, 2022. "Improving Annual Streamflow Prediction by Extracting Information from High-frequency Components of Streamflow," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(12), pages 4535-4555, September.
    11. Sarmad Dashti Latif & Ali Najah Ahmed, 2023. "A review of deep learning and machine learning techniques for hydrological inflow forecasting," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 12189-12216, November.
    12. Zizhen Cheng & Li Wang & Yumeng Yang, 2023. "A Hybrid Feature Pyramid CNN-LSTM Model with Seasonal Inflection Month Correction for Medium- and Long-Term Power Load Forecasting," Energies, MDPI, vol. 16(7), pages 1-18, March.
    13. Yani Lian & Jungang Luo & Jingmin Wang & Ganggang Zuo & Na Wei, 2022. "Climate-driven Model Based on Long Short-Term Memory and Bayesian Optimization for Multi-day-ahead Daily Streamflow Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(1), pages 21-37, January.
    14. Hyunsoo Kim & Jiseok Jeong & Changwan Kim, 2022. "Daily Peak-Electricity-Demand Forecasting Based on Residual Long Short-Term Network," Mathematics, MDPI, vol. 10(23), pages 1-17, November.
    15. Sheng He & Xuefeng Sang & Junxian Yin & Yang Zheng & Heting Chen, 2023. "Short-term Runoff Prediction Optimization Method Based on BGRU-BP and BLSTM-BP Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(2), pages 747-768, January.
    16. Khan, Zulfiqar Ahmad & Khan, Shabbir Ahmad & Hussain, Tanveer & Baik, Sung Wook, 2024. "DSPM: Dual sequence prediction model for efficient energy management in micro-grid," Applied Energy, Elsevier, vol. 356(C).
    17. Guillaume Guerard & Hugo Pousseur & Ihab Taleb, 2021. "Isolated Areas Consumption Short-Term Forecasting Method," Energies, MDPI, vol. 14(23), pages 1-23, November.
    18. Lu, Renzhi & Bai, Ruichang & Ding, Yuemin & Wei, Min & Jiang, Junhui & Sun, Mingyang & Xiao, Feng & Zhang, Hai-Tao, 2021. "A hybrid deep learning-based online energy management scheme for industrial microgrid," Applied Energy, Elsevier, vol. 304(C).
    19. Byung-Ki Jeon & Eui-Jong Kim, 2021. "LSTM-Based Model Predictive Control for Optimal Temperature Set-Point Planning," Sustainability, MDPI, vol. 13(2), pages 1-14, January.
    20. Li, Ao & Xiao, Fu & Zhang, Chong & Fan, Cheng, 2021. "Attention-based interpretable neural network for building cooling load prediction," Applied Energy, Elsevier, vol. 299(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:38:y:2024:i:6:d:10.1007_s11269-023-03731-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.