IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i13p10660-d1188104.html
   My bibliography  Save this article

A Daily Air Pollutant Concentration Prediction Framework Combining Successive Variational Mode Decomposition and Bidirectional Long Short-Term Memory Network

Author

Listed:
  • Zhong Huang

    (College of Science, Wuhan University of Science and Technology, Wuhan 430065, China)

  • Linna Li

    (College of Science, Wuhan University of Science and Technology, Wuhan 430065, China
    Hubei Province Key Laboratory of Systems, Science in Metallurgical Process, Wuhan 430065, China)

  • Guorong Ding

    (Statistics Bureau of Maiji District, Tianshui 741020, China)

Abstract

Precise and efficient air quality prediction plays a vital role in safeguarding public health and informing policy-making. Fine particulate matter, specifically PM 2.5 and PM 10 , serves as a crucial indicator for assessing and managing air pollution levels. In this paper, a daily pollution concentration prediction model combining successive variational mode decomposition (SVMD) and a bidirectional long short-term memory (BiLSTM) neural network is proposed. Firstly, SVMD is used as an unsupervised feature-learning method to divide data into intrinsic mode functions (IMFs) and to extract frequency features and improve short-term trend prediction. Secondly, the BiLSTM network is introduced for supervised learning to capture small changes in the air pollutant sequence and perform prediction of the decomposed sequence. Furthermore, the Bayesian optimization (BO) algorithm is employed to identify the optimal key parameters of the BiLSTM model. Lastly, the predicted values are reconstructed to generate the final prediction results for the daily PM 2.5 and PM 10 datasets. The prediction performance of the proposed model is validated using the daily PM 2.5 and PM 10 datasets collected from the China Environmental Monitoring Center in Tianshui, Gansu, and Wuhan, Hubei. The results show that SVMD can smooth the original series more effectively than other decomposition methods, and that the BO-BiLSTM method is better than other LSTM-based models, thereby proving that the proposed model has excellent feasibility and accuracy.

Suggested Citation

  • Zhong Huang & Linna Li & Guorong Ding, 2023. "A Daily Air Pollutant Concentration Prediction Framework Combining Successive Variational Mode Decomposition and Bidirectional Long Short-Term Memory Network," Sustainability, MDPI, vol. 15(13), pages 1-22, July.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:10660-:d:1188104
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/13/10660/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/13/10660/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fugang LI & Guangwen MA & Shijun CHEN & Weibin HUANG, 2021. "An Ensemble Modeling Approach to Forecast Daily Reservoir Inflow Using Bidirectional Long- and Short-Term Memory (Bi-LSTM), Variational Mode Decomposition (VMD), and Energy Entropy Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(9), pages 2941-2963, July.
    2. Ding, Pan & Liu, Xiaojuan & Li, Huiqin & Huang, Zequan & Zhang, Ke & Shao, Long & Abedinia, Oveis, 2021. "Useful life prediction based on wavelet packet decomposition and two-dimensional convolutional neural network for lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    3. Wang, Jianzhou & Yang, Wendong & Du, Pei & Li, Yifan, 2018. "Research and application of a hybrid forecasting framework based on multi-objective optimization for electrical power system," Energy, Elsevier, vol. 148(C), pages 59-78.
    4. Hengliang Guo & Yanling Guo & Wenyu Zhang & Xiaohui He & Zongxi Qu, 2021. "Research on a Novel Hybrid Decomposition–Ensemble Learning Paradigm Based on VMD and IWOA for PM 2.5 Forecasting," IJERPH, MDPI, vol. 18(3), pages 1-19, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Huan & Li, Yan-Fu & Zhang, Ying, 2023. "Bioinspired spiking spatiotemporal attention framework for lithium-ion batteries state-of-health estimation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    2. Sheng He & Xuefeng Sang & Junxian Yin & Yang Zheng & Heting Chen, 2023. "Short-term Runoff Prediction Optimization Method Based on BGRU-BP and BLSTM-BP Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(2), pages 747-768, January.
    3. Jianzhou Wang & Chunying Wu & Tong Niu, 2019. "A Novel System for Wind Speed Forecasting Based on Multi-Objective Optimization and Echo State Network," Sustainability, MDPI, vol. 11(2), pages 1-34, January.
    4. Yang, Wendong & Wang, Jianzhou & Niu, Tong & Du, Pei, 2019. "A hybrid forecasting system based on a dual decomposition strategy and multi-objective optimization for electricity price forecasting," Applied Energy, Elsevier, vol. 235(C), pages 1205-1225.
    5. Tian, Chengshi & Hao, Yan & Hu, Jianming, 2018. "A novel wind speed forecasting system based on hybrid data preprocessing and multi-objective optimization," Applied Energy, Elsevier, vol. 231(C), pages 301-319.
    6. Nie, Ying & Li, Ping & Wang, Jianzhou & Zhang, Lifang, 2024. "A novel multivariate electrical price bi-forecasting system based on deep learning, a multi-input multi-output structure and an operator combination mechanism," Applied Energy, Elsevier, vol. 366(C).
    7. Tongrui Zhang & Hao Sun, 2025. "A Method for Predicting the Remaining Life of Lithium-Ion Batteries Based on an Improved Dempster–Shafer Evidence Theory Framework," Energies, MDPI, vol. 18(13), pages 1-13, June.
    8. Zhang, Ying & Li, Yan-Fu, 2022. "Prognostics and health management of Lithium-ion battery using deep learning methods: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    9. Bao-Jian Li & Guo-Liang Sun & Yan Liu & Wen-Chuan Wang & Xu-Dong Huang, 2022. "Monthly Runoff Forecasting Using Variational Mode Decomposition Coupled with Gray Wolf Optimizer-Based Long Short-term Memory Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(6), pages 2095-2115, April.
    10. Singh, Priyanka & Dwivedi, Pragya & Kant, Vibhor, 2019. "A hybrid method based on neural network and improved environmental adaptation method using Controlled Gaussian Mutation with real parameter for short-term load forecasting," Energy, Elsevier, vol. 174(C), pages 460-477.
    11. Jiang, Ping & Nie, Ying & Wang, Jianzhou & Huang, Xiaojia, 2023. "Multivariable short-term electricity price forecasting using artificial intelligence and multi-input multi-output scheme," Energy Economics, Elsevier, vol. 117(C).
    12. Xiong, Xiaoping & Qing, Guohua, 2023. "A hybrid day-ahead electricity price forecasting framework based on time series," Energy, Elsevier, vol. 264(C).
    13. Sun, Chenhao & Wang, Xin & Zheng, Yihui, 2020. "An ensemble system to predict the spatiotemporal distribution of energy security weaknesses in transmission networks," Applied Energy, Elsevier, vol. 258(C).
    14. Xin Yang & Jianzhong Zhou & Qianyi Zhang & Zhanxin Xu & Jianyun Zhang, 2024. "Evaluation and Interpretation of Runoff Forecasting Models Based on Hybrid Deep Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(6), pages 1987-2013, April.
    15. Yu, Jie & Chen, Lu & Wang, Qiong & Zhang, Xi & Sun, Qinghe, 2024. "Towards sustainable regional energy solutions: An optimized operational model for integrated energy systems with price-responsive planning," Energy, Elsevier, vol. 305(C).
    16. Duan, Jikai & Chang, Mingheng & Chen, Xiangyue & Wang, Wenpeng & Zuo, Hongchao & Bai, Yulong & Chen, Bolong, 2022. "A combined short-term wind speed forecasting model based on CNN–RNN and linear regression optimization considering error," Renewable Energy, Elsevier, vol. 200(C), pages 788-808.
    17. Li, Chuan & Zhang, Huahua & Ding, Ping & Yang, Shuai & Bai, Yun, 2023. "Deep feature extraction in lifetime prognostics of lithium-ion batteries: Advances, challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    18. Guo, Fei & Wu, Xiongwei & Liu, Lili & Ye, Jilei & Wang, Tao & Fu, Lijun & Wu, Yuping, 2023. "Prediction of remaining useful life and state of health of lithium batteries based on time series feature and Savitzky-Golay filter combined with gated recurrent unit neural network," Energy, Elsevier, vol. 270(C).
    19. Yang, Wendong & Sun, Shaolong & Hao, Yan & Wang, Shouyang, 2022. "A novel machine learning-based electricity price forecasting model based on optimal model selection strategy," Energy, Elsevier, vol. 238(PC).
    20. Song, Jingjing & Wang, Jianzhou & Lu, Haiyan, 2018. "A novel combined model based on advanced optimization algorithm for short-term wind speed forecasting," Applied Energy, Elsevier, vol. 215(C), pages 643-658.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:10660-:d:1188104. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.