IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v32y2018i9d10.1007_s11269-018-1984-7.html
   My bibliography  Save this article

Budyko’s Based Method for Annual Runoff Characterization across Different Climatic Areas: an Application to United States

Author

Listed:
  • Domenico Caracciolo

    (Università di Cagliari
    Regional Environmental Protection Agency of Sardinia (ARPAS))

  • D. Pumo

    (Università di Palermo)

  • F. Viola

    (Università di Cagliari)

Abstract

Runoff data knowledge is of fundamental importance for a wide range of hydrological, ecological, and socioeconomic applications. The reconstruction of annual runoff is a fundamental task for several activities related to water resources management, especially for ungauged basins. At catchment scales, the Budyko’s framework provides an extremely useful and, in some cases, accurate estimation of the long-term partitioning of precipitation into evapotranspiration and runoff as a function of the prevailing climatic conditions. Recently the same long-term partitioning rules have been successfully used to describe water partitioning also at the annual scale and calculate the annual runoff distribution within a simple analytic framework in arid and semi-arid basins. One of the main advantages of the latter method is that only annual precipitation and potential evapotranspiration statistics, and the Fu’s equation parameter ω are required to obtain the annual runoff probability distribution. The aim of this study is to test the limit and potentialities of the aforementioned method under different climatic conditions. To this aim, the model is applied to more than four hundred basins located in the United States. Catchments were grouped into five different samples, following the subdivision of the continental region in five homogeneous climatic zones according to Köppen-Geiger classification. The theoretical probability distribution of annual runoff at each basin has been compared with that derived from historical observations. The results confirm the capability of the tested technique to reproduce the empirical annual runoff distributions with similar and satisfactory performances across different areas, revealing a good option also in cases characterized by climate and hydrological conditions very different from those hypothesized during the original analytical model design, thus extending the geographical and conceptual limits of applicability of the framework.

Suggested Citation

  • Domenico Caracciolo & D. Pumo & F. Viola, 2018. "Budyko’s Based Method for Annual Runoff Characterization across Different Climatic Areas: an Application to United States," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(9), pages 3189-3202, July.
  • Handle: RePEc:spr:waterr:v:32:y:2018:i:9:d:10.1007_s11269-018-1984-7
    DOI: 10.1007/s11269-018-1984-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-018-1984-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-018-1984-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. W. R. Berghuijs & R. A. Woods & M. Hrachowitz, 2014. "A precipitation shift from snow towards rain leads to a decrease in streamflow," Nature Climate Change, Nature, vol. 4(7), pages 583-586, July.
    2. Harris Vangelis & Mike Spiliotis & George Tsakiris, 2011. "Drought Severity Assessment Based on Bivariate Probability Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(1), pages 357-371, January.
    3. P. C. D. Milly & K. A. Dunne & A. V. Vecchia, 2005. "Global pattern of trends in streamflow and water availability in a changing climate," Nature, Nature, vol. 438(7066), pages 347-350, November.
    4. Richard Seager & Mingfang Ting & Cuihua Li & Naomi Naik & Ben Cook & Jennifer Nakamura & Haibo Liu, 2013. "Projections of declining surface-water availability for the southwestern United States," Nature Climate Change, Nature, vol. 3(5), pages 482-486, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuai Li & Tao Du & Christopher James Gippel, 2022. "A Modified Fu (1981) Equation with a Time-varying Parameter that Improves Estimates of Inter-annual Variability in Catchment Water Balance," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(5), pages 1645-1659, March.
    2. Guangxing Ji & Leying Wu & Liangdong Wang & Dan Yan & Zhizhu Lai, 2021. "Attribution Analysis of Seasonal Runoff in the Source Region of the Yellow River Using Seasonal Budyko Hypothesis," Land, MDPI, vol. 10(5), pages 1-14, May.
    3. Guangxing Ji & Huiyun Song & Hejie Wei & Leying Wu, 2021. "Attribution Analysis of Climate and Anthropic Factors on Runoff and Vegetation Changes in the Source Area of the Yangtze River from 1982 to 2016," Land, MDPI, vol. 10(6), pages 1-13, June.
    4. Shuaijun Yue & Junchang Huang & Yali Zhang & Weiqiang Chen & Yulong Guo & Mingyue Cheng & Guangxing Ji, 2023. "Quantitative Evaluation of the Impact of Vegetation Restoration and Climate Variation on Runoff Attenuation in the Luan River Basin Based on the Extended Budyko Model," Land, MDPI, vol. 12(8), pages 1-14, August.
    5. Francesco Viola & X. Feng & D. Caracciolo, 2019. "Impacts of Hydrological Changes on Annual Runoff Distribution in Seasonally Dry Basins," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(7), pages 2319-2333, May.
    6. Arash Malekian & Bahram Choubin & Junguo Liu & Farzaneh Sajedi-Hosseini, 2019. "Development of a New Integrated Framework for Improved Rainfall-Runoff Modeling under Climate Variability and Human Activities," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(7), pages 2501-2515, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luis Garrote, 2017. "Managing Water Resources to Adapt to Climate Change: Facing Uncertainty and Scarcity in a Changing Context," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 2951-2963, August.
    2. John Quiggin, 2010. "Agriculture and global climate stabilization: a public good analysis," Agricultural Economics, International Association of Agricultural Economists, vol. 41(s1), pages 121-132, November.
    3. S . K. Oni & F. Mieres & M. N. Futter & H. Laudon, 2017. "Soil temperature responses to climate change along a gradient of upland–riparian transect in boreal forest," Climatic Change, Springer, vol. 143(1), pages 27-41, July.
    4. Alvaro Calzadilla & Katrin Rehdanz & Richard Betts & Pete Falloon & Andy Wiltshire & Richard Tol, 2013. "Climate change impacts on global agriculture," Climatic Change, Springer, vol. 120(1), pages 357-374, September.
    5. Andrew John & Avril Horne & Rory Nathan & Michael Stewardson & J. Angus Webb & Jun Wang & N. LeRoy Poff, 2021. "Climate change and freshwater ecology: Hydrological and ecological methods of comparable complexity are needed to predict risk," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(2), March.
    6. I. García-Garizábal & J. Causapé & R. Abrahao & D. Merchan, 2014. "Impact of Climate Change on Mediterranean Irrigation Demand: Historical Dynamics of Climate and Future Projections," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(5), pages 1449-1462, March.
    7. Quiggin, John & Adamson, David & Chambers, Sarah & Schrobback, Peggy, 2009. "Climate change, mitigation and adaptation: the case of the Murray-Darling Basin in Australia," Risk and Sustainable Management Group Working Papers 149878, University of Queensland, School of Economics.
    8. Hsin-Yu Chen & Chia-Chi Huang & Hsin-Fu Yeh, 2021. "Quantifying the Relative Contribution of the Climate Change and Human Activity on Runoff in the Choshui River Alluvial Fan, Taiwan," Land, MDPI, vol. 10(8), pages 1-14, August.
    9. Hrozencik, Aaron & Aillery, Marcel, 2021. "Trends in U.S. Irrigated Agriculture: Increasing Resilience Under Water Supply Scarcity," USDA Miscellaneous 316792, United States Department of Agriculture.
    10. Moon-Hwan Lee & Deg-Hyo Bae, 2015. "Climate Change Impact Assessment on Green and Blue Water over Asian Monsoon Region," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2407-2427, May.
    11. Nicolas Misailidis Stríkis & Plácido Fabrício Silva Melo Buarque & Francisco William Cruz & Juan Pablo Bernal & Mathias Vuille & Ernesto Tejedor & Matheus Simões Santos & Marília Harumi Shimizu & Ange, 2024. "Modern anthropogenic drought in Central Brazil unprecedented during last 700 years," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    12. Wenxin Xu & Jie Chen & Xunchang J. Zhang, 2022. "Scale Effects of the Monthly Streamflow Prediction Using a State-of-the-art Deep Learning Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3609-3625, August.
    13. Kukal, M.S. & Irmak, S., 2020. "Characterization of water use and productivity dynamics across four C3 and C4 row crops under optimal growth conditions," Agricultural Water Management, Elsevier, vol. 227(C).
    14. John Quiggin & David Adamson & Sarah Chambers & Peggy Schrobback, 2010. "Climate Change, Uncertainty, and Adaptation: The Case of Irrigated Agriculture in the Murray–Darling Basin in Australia," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 58(4), pages 531-554, December.
    15. Moldir Rakhimova & Tie Liu & Sanim Bissenbayeva & Yerbolat Mukanov & Khusen Sh. Gafforov & Zhuldyzay Bekpergenova & Aminjon Gulakhmadov, 2020. "Assessment of the Impacts of Climate Change and Human Activities on Runoff Using Climate Elasticity Method and General Circulation Model (GCM) in the Buqtyrma River Basin, Kazakhstan," Sustainability, MDPI, vol. 12(12), pages 1-22, June.
    16. Jinfei Hu & Guangju Zhao & Pengfei Li & Xingmin Mu, 2022. "Variations of pan evaporation and its attribution from 1961 to 2015 on the Loess Plateau, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(2), pages 1199-1217, March.
    17. Jinping Zhang & Yong Zhao & Weihua Xiao, 2014. "Study on Markov Joint Transition Probability and Encounter Probability of Rainfall and Reference Crop Evapotranspiration in the Irrigation District," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(15), pages 5543-5553, December.
    18. Hrozencik, Aaron & Wallander, Steven & Aillery, Marcel, 2021. "Irrigation Organizations: Water Storage and Delivery Infrastructure," Economic Brief 327232, United States Department of Agriculture, Economic Research Service.
    19. Asim Jahangir Khan & Manfred Koch & Adnan Ahmad Tahir, 2020. "Impacts of Climate Change on the Water Availability, Seasonality and Extremes in the Upper Indus Basin (UIB)," Sustainability, MDPI, vol. 12(4), pages 1-27, February.
    20. Xiaowen Zhuang & Yurui Fan & Yongping Li & Chuanbao Wu, 2023. "Evaluation Climate Change Impacts on Water Resources Over the Upper Reach of the Yellow River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(6), pages 2875-2889, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:32:y:2018:i:9:d:10.1007_s11269-018-1984-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.