IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v3y2013i5d10.1038_nclimate1787.html
   My bibliography  Save this article

Projections of declining surface-water availability for the southwestern United States

Author

Listed:
  • Richard Seager

    (Lamont Doherty Earth Observatory of Columbia University)

  • Mingfang Ting

    (Lamont Doherty Earth Observatory of Columbia University)

  • Cuihua Li

    (Lamont Doherty Earth Observatory of Columbia University)

  • Naomi Naik

    (Lamont Doherty Earth Observatory of Columbia University)

  • Ben Cook

    (NASA Goddard Institute for Space Studies)

  • Jennifer Nakamura

    (Lamont Doherty Earth Observatory of Columbia University)

  • Haibo Liu

    (Lamont Doherty Earth Observatory of Columbia University)

Abstract

Under global warming, arid subtropical regions are expected to get drier and expand polewards. This study uses model simulations to examine changes in hydrological parameters for the southwestern United States. The predictions for 2021–2040 show declines in surface-water availability, resulting in reduced soil moisture and runoff.

Suggested Citation

  • Richard Seager & Mingfang Ting & Cuihua Li & Naomi Naik & Ben Cook & Jennifer Nakamura & Haibo Liu, 2013. "Projections of declining surface-water availability for the southwestern United States," Nature Climate Change, Nature, vol. 3(5), pages 482-486, May.
  • Handle: RePEc:nat:natcli:v:3:y:2013:i:5:d:10.1038_nclimate1787
    DOI: 10.1038/nclimate1787
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nclimate1787
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nclimate1787?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Theodore E. W. Grantham & Daren M. Carlisle & Gregory J. McCabe & Jeanette K. Howard, 2018. "Sensitivity of streamflow to climate change in California," Climatic Change, Springer, vol. 149(3), pages 427-441, August.
    2. Hrozencik, Aaron & Wallander, Steven & Aillery, Marcel, 2021. "Irrigation Organizations: Water Storage and Delivery Infrastructure," USDA Miscellaneous 314931, United States Department of Agriculture.
    3. Hrozencik, Aaron & Aillery, Marcel, 2021. "Trends in U.S. Irrigated Agriculture: Increasing Resilience Under Water Supply Scarcity," USDA Miscellaneous 316792, United States Department of Agriculture.
    4. Kahsar, Rudy, 2020. "The potential for brackish water use in thermoelectric power generation in the American southwest," Energy Policy, Elsevier, vol. 137(C).
    5. Christopher Potter, 2015. "Vegetation cover change in the Upper Kings River basin of the Sierra Nevada detected using Landsat satellite image analysis," Climatic Change, Springer, vol. 131(4), pages 635-647, August.
    6. Luis Garrote, 2017. "Managing Water Resources to Adapt to Climate Change: Facing Uncertainty and Scarcity in a Changing Context," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 2951-2963, August.
    7. Lauren E. Parker & John T. Abatzoglou, 2018. "Shifts in the thermal niche of almond under climate change," Climatic Change, Springer, vol. 147(1), pages 211-224, March.
    8. Lee, Uisung & Han, Jeongwoo & Elgowainy, Amgad & Wang, Michael, 2018. "Regional water consumption for hydro and thermal electricity generation in the United States," Applied Energy, Elsevier, vol. 210(C), pages 661-672.
    9. Helen Fillmore & Loretta Singletary, 2021. "Climate data and information needs of indigenous communities on reservation lands: insights from stakeholders in the Southwestern United States," Climatic Change, Springer, vol. 169(3), pages 1-22, December.
    10. Hrozencik, Aaron & Wallander, Steven & Aillery, Marcel, 2021. "Irrigation Organizations: Water Storage and Delivery Infrastructure," Economic Brief 327232, United States Department of Agriculture, Economic Research Service.
    11. Domenico Caracciolo & D. Pumo & F. Viola, 2018. "Budyko’s Based Method for Annual Runoff Characterization across Different Climatic Areas: an Application to United States," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(9), pages 3189-3202, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:3:y:2013:i:5:d:10.1038_nclimate1787. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.