IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v16y2002i1p1-22.html
   My bibliography  Save this article

Effect of Averaging Operators in Fuzzy Optimization of Reservoir Operation

Author

Listed:
  • A. Tilmant
  • P. Fortemps
  • M. Vanclooster

Abstract

Fuzzy multiobjective decision makingmodels generally rely on the aggregation of theobjectives to form a decision function. The generalizedaveraging operator is usually adopted for aggregatingmultiple and unequal objectives because it allows trade-off amongst the objectives, and has been shown to besuitable to model human decision making behavior. In thefield of water resource management, most of the decision-making problems involving the generalized averagingoperator implicitly assume the decision maker (DM) israther optimistic. The analysis of the DM's behaviorduring the aggregation process and its impact on theperformance of the system, has therefore never beenaddressed by many researchers and decision makers. Theaim of this paper is to investigate the relationshipbetween decision makers' index of optimism and the long-term performance of a reservoir resource. Morespecifically, the generalized averaging operator, whoseparameter can be interpreted as the DM's index ofoptimism, is imbedded into a fuzzy stochastic dynamicprogram (FSDP). This approach is developed andimplemented to derive optimal operating policies for thehydroelectric complex of the Uruguay River basin inSouthern Brazil. FSDP-derived policies with differentindices of optimism are then compared with simulation. Weshow that system performance may be influenced by thedecision maker's behavior during the aggregation, andthat the optimistic assumption may not yield tosatisfactory results, especially during critical timeperiods. Copyright Kluwer Academic Publishers 2002

Suggested Citation

  • A. Tilmant & P. Fortemps & M. Vanclooster, 2002. "Effect of Averaging Operators in Fuzzy Optimization of Reservoir Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 16(1), pages 1-22, February.
  • Handle: RePEc:spr:waterr:v:16:y:2002:i:1:p:1-22
    DOI: 10.1023/A:1015523901205
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1023/A:1015523901205
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1023/A:1015523901205?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. E. Bellman & L. A. Zadeh, 1970. "Decision-Making in a Fuzzy Environment," Management Science, INFORMS, vol. 17(4), pages 141-164, December.
    2. Sharon A. Johnson & Jery R. Stedinger & Christine A. Shoemaker & Ying Li & José Alberto Tejada-Guibert, 1993. "Numerical Solution of Continuous-State Dynamic Programs Using Linear and Spline Interpolation," Operations Research, INFORMS, vol. 41(3), pages 484-500, June.
    3. Yoram Wind & Thomas L. Saaty, 1980. "Marketing Applications of the Analytic Hierarchy Process," Management Science, INFORMS, vol. 26(7), pages 641-658, July.
    4. Dubois, Didier & Fortemps, Philippe, 1999. "Computing improved optimal solutions to max-min flexible constraint satisfaction problems," European Journal of Operational Research, Elsevier, vol. 118(1), pages 95-126, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jenq-Tzong Shiau & Yen-Ning Hung & Huei-Er Sie, 2018. "Effects of Hedging Factors and Fuzziness on Shortage Characteristics During Droughts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(5), pages 1913-1929, March.
    2. Xinyu Wu & Xilong Cheng & Meng Zhao & Chuntian Cheng & Qilin Ying, 2022. "Multi-Level Dependent-Chance Model for Hydropower Reservoir Operations," Energies, MDPI, vol. 15(13), pages 1-15, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Bin & Xu, Zeshui, 2014. "Analytic hierarchy process-hesitant group decision making," European Journal of Operational Research, Elsevier, vol. 239(3), pages 794-801.
    2. Sajid Ali & Sang-Moon Lee & Choon-Man Jang, 2017. "Determination of the Most Optimal On-Shore Wind Farm Site Location Using a GIS-MCDM Methodology: Evaluating the Case of South Korea," Energies, MDPI, vol. 10(12), pages 1-22, December.
    3. Zola, Fernanda Cavicchioli & Colmenero, João Carlos & Aragão, Franciely Velozo & Rodrigues, Thaisa & Junior, Aldo Braghini, 2020. "Multicriterial model for selecting a charcoal kiln," Energy, Elsevier, vol. 190(C).
    4. Fabio Blanco-Mesa & Anna M. Gil-Lafuente & José M. Merigó, 2018. "Subjective stakeholder dynamics relationships treatment: a methodological approach using fuzzy decision-making," Computational and Mathematical Organization Theory, Springer, vol. 24(4), pages 441-472, December.
    5. A. Nureize & J. Watada & S. Wang, 2014. "Fuzzy random regression based multi-attribute evaluation and its application to oil palm fruit grading," Annals of Operations Research, Springer, vol. 219(1), pages 299-315, August.
    6. Tseng, Fang-Mei & Chiu, Yu-Jing & Chen, Ja-Shen, 2009. "Measuring business performance in the high-tech manufacturing industry: A case study of Taiwan's large-sized TFT-LCD panel companies," Omega, Elsevier, vol. 37(3), pages 686-697, June.
    7. Mohamed Hanine & Omar Boutkhoum & Abderrafie El Maknissi & Abdessadek Tikniouine & Tarik Agouti, 2016. "Decision making under uncertainty using PEES–fuzzy AHP–fuzzy TOPSIS methodology for landfill location selection," Environment Systems and Decisions, Springer, vol. 36(4), pages 351-367, December.
    8. Amelia Bilbao-Terol & Mar Arenas-Parra & Raquel Quiroga-García & Celia Bilbao-Terol, 2022. "An extended best–worst multiple reference point method: application in the assessment of non-life insurance companies," Operational Research, Springer, vol. 22(5), pages 5323-5362, November.
    9. Liu Fang & Peng Yanan & Zhang Weiguo & Pedrycz Witold, 2017. "On Consistency in AHP and Fuzzy AHP," Journal of Systems Science and Information, De Gruyter, vol. 5(2), pages 128-147, April.
    10. Mumtaz Karatas, 2017. "Multiattribute Decision Making Using Multiperiod Probabilistic Weighted Fuzzy Axiomatic Design," Systems Engineering, John Wiley & Sons, vol. 20(4), pages 318-334, July.
    11. Chang, Yu-Hern & Yeh, Chung-Hsing, 2004. "A new airline safety index," Transportation Research Part B: Methodological, Elsevier, vol. 38(4), pages 369-383, May.
    12. Li Xuesen & Wang Bende & Rajeshwar Mehrotra & Ashish Sharma & Wang Guoli, 2009. "Consideration of Trends in Evaluating Inter-basin Water Transfer Alternatives within a Fuzzy Decision Making Framework," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(15), pages 3207-3220, December.
    13. Baskaran, Venkatesan & Nachiappan, Subramanian & Rahman, Shams, 2012. "Indian textile suppliers' sustainability evaluation using the grey approach," International Journal of Production Economics, Elsevier, vol. 135(2), pages 647-658.
    14. Hocine, Amine & Kouaissah, Noureddine, 2020. "XOR analytic hierarchy process and its application in the renewable energy sector," Omega, Elsevier, vol. 97(C).
    15. Punys, P. & Radzevičius, A. & Kvaraciejus, A. & Gasiūnas, V. & Šilinis, L., 2019. "A multi-criteria analysis for siting surface-flow constructed wetlands in tile-drained agricultural catchments: The case of Lithuania," Agricultural Water Management, Elsevier, vol. 213(C), pages 1036-1046.
    16. Ewa Roszkowska, 2020. "The extention rank ordering criteria weighting methods in fuzzy enviroment," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 30(2), pages 91-114.
    17. Guillaume, Romain & Houé, Raymond & Grabot, Bernard, 2014. "Robust competence assessment for job assignment," European Journal of Operational Research, Elsevier, vol. 238(2), pages 630-644.
    18. Dubois, D. & Fortemps, Ph., 2005. "Selecting preferred solutions in the minimax approach to dynamic programming problems under flexible constraints," European Journal of Operational Research, Elsevier, vol. 160(3), pages 582-598, February.
    19. Anglani, Alfredo & Grieco, Antonio & Guerriero, Emanuela & Musmanno, Roberto, 2005. "Robust scheduling of parallel machines with sequence-dependent set-up costs," European Journal of Operational Research, Elsevier, vol. 161(3), pages 704-720, March.
    20. Krista Danielle S. Yu & Kathleen B. Aviso & Michael Angelo B. Promentilla & Joost R. Santos & Raymond R. Tan, 2016. "A weighted fuzzy linear programming model in economic input–output analysis: an application to risk management of energy system disruptions," Environment Systems and Decisions, Springer, vol. 36(2), pages 183-195, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:16:y:2002:i:1:p:1-22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.