IDEAS home Printed from https://ideas.repec.org/a/bpj/jossai/v5y2017i2p128-147n3.html
   My bibliography  Save this article

On Consistency in AHP and Fuzzy AHP

Author

Listed:
  • Liu Fang

    (School of Mathematics and Information Science, Guangxi University, Nanning 530004, China)

  • Peng Yanan

    (School of Mathematics and Information Science, Guangxi University, Nanning 530004, China)

  • Zhang Weiguo

    (School of Business Administration, South China University of Technology, Guangzhou 510641, China)

  • Pedrycz Witold

    (Department of Electrical and Computer Engineering, University of Alberta, Edmonton T6R 2V4 AB, Canada)

Abstract

The analytic hierarchy process (AHP) is used widely for analyzing decisions made in various real-world applications. Its basic idea is to construct a hierarchy of concepts encountered in a given decision problem and to choose the best alternative according to pairwise comparison matrices given by the decision maker. Under the assumption of fully rational economics, a reasonable decision should be consistent. It becomes an important issue on how to analyze and ensure the consistency of comparison matrices together with the judgments of the decision maker. The main objectives of the present paper are threefold. First, we review the basic idea and methods used to define the consistency and the transitivity of multiplicative reciprocal matrices, additive reciprocal matrices and comparison matrices with fuzzy interval and triangular fuzzy numbers. The existing controversy behind the applications of fuzzy set theory to the AHP in the literature is presented. Second, the consistency of the collective comparison matrices in group decision making based on AHP and fuzzy AHP is further analyzed. We point out that the weak consistency of preference relations with fuzzy numbers in fuzzy AHP and group decision making should be investigated comprehensively. Third, under the consideration of the vagueness in the process of evaluating the judgements, a new concept of fuzzy consistency of comparison matrices in the AHP is given.

Suggested Citation

  • Liu Fang & Peng Yanan & Zhang Weiguo & Pedrycz Witold, 2017. "On Consistency in AHP and Fuzzy AHP," Journal of Systems Science and Information, De Gruyter, vol. 5(2), pages 128-147, April.
  • Handle: RePEc:bpj:jossai:v:5:y:2017:i:2:p:128-147:n:3
    DOI: 10.21078/JSSI-2017-128-20
    as

    Download full text from publisher

    File URL: https://doi.org/10.21078/JSSI-2017-128-20
    Download Restriction: no

    File URL: https://libkey.io/10.21078/JSSI-2017-128-20?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. R. E. Bellman & L. A. Zadeh, 1970. "Decision-Making in a Fuzzy Environment," Management Science, INFORMS, vol. 17(4), pages 141-164, December.
    2. Wang, Zhou-Jing & Li, Kevin W., 2015. "A multi-step goal programming approach for group decision making with incomplete interval additive reciprocal comparison matrices," European Journal of Operational Research, Elsevier, vol. 242(3), pages 890-900.
    3. Matteo Brunelli & Michele Fedrizzi, 2015. "Axiomatic properties of inconsistency indices for pairwise comparisons," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 66(1), pages 1-15, January.
    4. Thomas L. Saaty, 1986. "Axiomatic Foundation of the Analytic Hierarchy Process," Management Science, INFORMS, vol. 32(7), pages 841-855, July.
    5. Matteo Brunelli & Luisa Canal & Michele Fedrizzi, 2013. "Inconsistency indices for pairwise comparison matrices: a numerical study," Annals of Operations Research, Springer, vol. 211(1), pages 493-509, December.
    6. Herrera-Viedma, E. & Herrera, F. & Chiclana, F. & Luque, M., 2004. "Some issues on consistency of fuzzy preference relations," European Journal of Operational Research, Elsevier, vol. 154(1), pages 98-109, April.
    7. Xu, Zeshui & Chen, Jian, 2008. "Some models for deriving the priority weights from interval fuzzy preference relations," European Journal of Operational Research, Elsevier, vol. 184(1), pages 266-280, January.
    8. Stein, William E. & Mizzi, Philip J., 2007. "The harmonic consistency index for the analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 177(1), pages 488-497, February.
    9. Saaty, Thomas L. & Vargas, Luis G., 1987. "Uncertainty and rank order in the analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 32(1), pages 107-117, October.
    10. Meimei Xia & Jian Chen, 2015. "Studies on Interval Multiplicative Preference Relations and Their Application to Group Decision Making," Group Decision and Negotiation, Springer, vol. 24(1), pages 115-144, January.
    11. Wang, Zhou-Jing, 2015. "A note on “A goal programming model for incomplete interval multiplicative preference relations and its application in group decision-making”," European Journal of Operational Research, Elsevier, vol. 247(3), pages 867-871.
    12. Yoram Wind & Thomas L. Saaty, 1980. "Marketing Applications of the Analytic Hierarchy Process," Management Science, INFORMS, vol. 26(7), pages 641-658, July.
    13. Thomas L. Saaty & Luis G. Vargas, 2012. "Models, Methods, Concepts & Applications of the Analytic Hierarchy Process," International Series in Operations Research and Management Science, Springer, edition 2, number 978-1-4614-3597-6, April.
    14. Lin, Robert & Lin, Jennifer Shu-Jen & Chang, Jason & Tang, Didos & Chao, Henry & Julian, Peter C, 2008. "Note on group consistency in analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 190(3), pages 672-678, November.
    15. Liu, Fang & Zhang, Wei-Guo & Wang, Zhong-Xing, 2012. "A goal programming model for incomplete interval multiplicative preference relations and its application in group decision-making," European Journal of Operational Research, Elsevier, vol. 218(3), pages 747-754.
    16. Nicky J. Welton & Howard H. Z. Thom, 2015. "Value of Information," Medical Decision Making, , vol. 35(5), pages 564-566, July.
    17. Chiclana, F. & Herrera-Viedma, E. & Herrera, F. & Alonso, S., 2007. "Some induced ordered weighted averaging operators and their use for solving group decision-making problems based on fuzzy preference relations," European Journal of Operational Research, Elsevier, vol. 182(1), pages 383-399, October.
    18. Liu, Fang & Zhang, Wei-Guo & Zhang, Li-Hua, 2014. "Consistency analysis of triangular fuzzy reciprocal preference relations," European Journal of Operational Research, Elsevier, vol. 235(3), pages 718-726.
    19. Xu, Z., 2000. "On consistency of the weighted geometric mean complex judgement matrix in AHP," European Journal of Operational Research, Elsevier, vol. 126(3), pages 683-687, November.
    20. Herrera, F. & Herrera-Viedma, E. & Chiclana, F., 2001. "Multiperson decision-making based on multiplicative preference relations," European Journal of Operational Research, Elsevier, vol. 129(2), pages 372-385, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Kevin W. & Wang, Zhou-Jing & Tong, Xiayu, 2016. "Acceptability analysis and priority weight elicitation for interval multiplicative comparison matrices," European Journal of Operational Research, Elsevier, vol. 250(2), pages 628-638.
    2. Meng, Fanyong & Tan, Chunqiao & Chen, Xiaohong, 2017. "Multiplicative consistency analysis for interval fuzzy preference relations: A comparative study," Omega, Elsevier, vol. 68(C), pages 17-38.
    3. Brunelli, Matteo & Fedrizzi, Michele, 2015. "Boundary properties of the inconsistency of pairwise comparisons in group decisions," European Journal of Operational Research, Elsevier, vol. 240(3), pages 765-773.
    4. Xu, Zeshui & Chen, Jian, 2008. "Some models for deriving the priority weights from interval fuzzy preference relations," European Journal of Operational Research, Elsevier, vol. 184(1), pages 266-280, January.
    5. Liu, Fang & Zhang, Wei-Guo & Zhang, Li-Hua, 2014. "Consistency analysis of triangular fuzzy reciprocal preference relations," European Journal of Operational Research, Elsevier, vol. 235(3), pages 718-726.
    6. Zhen Zhang & Chonghui Guo, 2017. "Deriving priority weights from intuitionistic multiplicative preference relations under group decision-making settings," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(12), pages 1582-1599, December.
    7. Jinpei Liu & Jingmiao Song & Qin Xu & Zhifu Tao & Huayou Chen, 2019. "Group decision making based on DEA cross-efficiency with intuitionistic fuzzy preference relations," Fuzzy Optimization and Decision Making, Springer, vol. 18(3), pages 345-370, September.
    8. Zhu, Bin & Xu, Zeshui, 2014. "Analytic hierarchy process-hesitant group decision making," European Journal of Operational Research, Elsevier, vol. 239(3), pages 794-801.
    9. Hocine, Amine & Kouaissah, Noureddine, 2020. "XOR analytic hierarchy process and its application in the renewable energy sector," Omega, Elsevier, vol. 97(C).
    10. Wu, Desheng Dash, 2009. "Performance evaluation: An integrated method using data envelopment analysis and fuzzy preference relations," European Journal of Operational Research, Elsevier, vol. 194(1), pages 227-235, April.
    11. May, Jerrold H. & Shang, Jennifer & Tjader, Youxu Cai & Vargas, Luis G., 2013. "A new methodology for sensitivity and stability analysis of analytic network models," European Journal of Operational Research, Elsevier, vol. 224(1), pages 180-188.
    12. Brunelli, Matteo & Fedrizzi, Michele, 2024. "Inconsistency indices for pairwise comparisons and the Pareto dominance principle," European Journal of Operational Research, Elsevier, vol. 312(1), pages 273-282.
    13. Tien-Chin Wang & Ying-Ling Lin, 2009. "Using a Multi-Criteria Group Decision Making Approach to Select Merged Strategies for Commercial Banks," Group Decision and Negotiation, Springer, vol. 18(6), pages 519-536, November.
    14. Jiří Mazurek, 2018. "Some notes on the properties of inconsistency indices in pairwise comparisons," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 28(1), pages 27-42.
    15. Wang, Zhou-Jing, 2015. "A note on “A goal programming model for incomplete interval multiplicative preference relations and its application in group decision-making”," European Journal of Operational Research, Elsevier, vol. 247(3), pages 867-871.
    16. Bernasconi, Michele & Choirat, Christine & Seri, Raffaello, 2014. "Empirical properties of group preference aggregation methods employed in AHP: Theory and evidence," European Journal of Operational Research, Elsevier, vol. 232(3), pages 584-592.
    17. Xiaodong Yu & Atiq ur Rehman & Samina Ashraf & Muhammad Hussain & Shahzad Faizi, 2023. "Multiperson Decision-Making Using Consistent Interval-Valued Fuzzy Information with Application in Supplier Selection," Mathematics, MDPI, vol. 11(4), pages 1-14, February.
    18. Huayou Chen & Ligang Zhou, 2012. "A Relative Entropy Approach to Group Decision Making with Interval Reciprocal Relations Based on COWA Operator," Group Decision and Negotiation, Springer, vol. 21(4), pages 585-599, July.
    19. Lidan Pei & Feifei Jin & Zhiwei Ni & Huayou Chen & Zhifu Tao, 2017. "An automatic iterative decision-making method for intuitionistic fuzzy linguistic preference relations," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(13), pages 2779-2793, October.
    20. Meimei Xia & Jian Chen, 2015. "Studies on Interval Multiplicative Preference Relations and Their Application to Group Decision Making," Group Decision and Negotiation, Springer, vol. 24(1), pages 115-144, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:jossai:v:5:y:2017:i:2:p:128-147:n:3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.