IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v218y2012i3p747-754.html
   My bibliography  Save this article

A goal programming model for incomplete interval multiplicative preference relations and its application in group decision-making

Author

Listed:
  • Liu, Fang
  • Zhang, Wei-Guo
  • Wang, Zhong-Xing

Abstract

In decision making problems, there may be the cases where the decision makers express their judgements by using preference relations with incomplete information. Then one of the key issues is how to estimate the missing preference values. In this paper, we introduce an incomplete interval multiplicative preference relation and give the definitions of consistent and acceptable incomplete ones, respectively. Based on the consistency property of interval multiplicative preference relations, a goal programming model is proposed to complement the acceptable incomplete one. A new algorithm of obtaining the priority vector from incomplete interval multiplicative preference relations is given. The goal programming model is further applied to group decision-making (GDM) where the experts evaluate their preferences as acceptable incomplete interval multiplicative preference relations. An interval weighted geometric averaging (IWGA) operator is proposed to aggregate individual preference relations into a social one. Furthermore, the social interval multiplicative preference relation owns acceptable consistency when every individual one is acceptably consistent. Two numerical examples are carried out to show the efficiency of the proposed goal programming model and the algorithms.

Suggested Citation

  • Liu, Fang & Zhang, Wei-Guo & Wang, Zhong-Xing, 2012. "A goal programming model for incomplete interval multiplicative preference relations and its application in group decision-making," European Journal of Operational Research, Elsevier, vol. 218(3), pages 747-754.
  • Handle: RePEc:eee:ejores:v:218:y:2012:i:3:p:747-754
    DOI: 10.1016/j.ejor.2011.11.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221711010514
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2011.11.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Podinovski, Vladislav V., 2007. "Interval articulation of superiority and precise elicitation of priorities," European Journal of Operational Research, Elsevier, vol. 180(1), pages 406-417, July.
    2. Fedrizzi, Michele & Giove, Silvio, 2007. "Incomplete pairwise comparison and consistency optimization," European Journal of Operational Research, Elsevier, vol. 183(1), pages 303-313, November.
    3. Herrera, F. & Martinez, L. & Sanchez, P. J., 2005. "Managing non-homogeneous information in group decision making," European Journal of Operational Research, Elsevier, vol. 166(1), pages 115-132, October.
    4. Vaidya, Omkarprasad S. & Kumar, Sushil, 2006. "Analytic hierarchy process: An overview of applications," European Journal of Operational Research, Elsevier, vol. 169(1), pages 1-29, February.
    5. Yoram Wind & Thomas L. Saaty, 1980. "Marketing Applications of the Analytic Hierarchy Process," Management Science, INFORMS, vol. 26(7), pages 641-658, July.
    6. Lin, Robert & Lin, Jennifer Shu-Jen & Chang, Jason & Tang, Didos & Chao, Henry & Julian, Peter C, 2008. "Note on group consistency in analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 190(3), pages 672-678, November.
    7. Zeshui Xu, 2006. "A Practical Procedure for Group Decision Making under Incomplete Multiplicative Linguistic Preference Relations," Group Decision and Negotiation, Springer, vol. 15(6), pages 581-591, November.
    8. S. Alonso & E. Herrera-Viedma & F. Chiclana & F. Herrera, 2009. "Individual And Social Strategies To Deal With Ignorance Situations In Multi-Person Decision Making," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 8(02), pages 313-333.
    9. Xu, Z., 2000. "On consistency of the weighted geometric mean complex judgement matrix in AHP," European Journal of Operational Research, Elsevier, vol. 126(3), pages 683-687, November.
    10. Siraj, Sajid & Mikhailov, Ludmil & Keane, John, 2012. "A heuristic method to rectify intransitive judgments in pairwise comparison matrices," European Journal of Operational Research, Elsevier, vol. 216(2), pages 420-428.
    11. Arbel, Ami & Vargas, Luis G., 1993. "Preference simulation and preference programming: robustness issues in priority derivation," European Journal of Operational Research, Elsevier, vol. 69(2), pages 200-209, September.
    12. Islam, R. & Biswal, M. P. & Alam, S. S., 1997. "Preference programming and inconsistent interval judgments," European Journal of Operational Research, Elsevier, vol. 97(1), pages 53-62, February.
    13. Arbel, Ami, 1989. "Approximate articulation of preference and priority derivation," European Journal of Operational Research, Elsevier, vol. 43(3), pages 317-326, December.
    14. Saaty, Thomas L. & Vargas, Luis G., 1987. "Uncertainty and rank order in the analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 32(1), pages 107-117, October.
    15. Wang, Ying-Ming & Elhag, Taha M.S., 2007. "A goal programming method for obtaining interval weights from an interval comparison matrix," European Journal of Operational Research, Elsevier, vol. 177(1), pages 458-471, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Virgilio López-Morales, 2018. "A Reliable Method for Consistency Improving of Interval Multiplicative Preference Relations Expressed under Uncertainty," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(05), pages 1561-1585, September.
    2. Fernandez, Eduardo & Olmedo, Rafael, 2013. "An outranking-based general approach to solving group multi-objective optimization problems," European Journal of Operational Research, Elsevier, vol. 225(3), pages 497-506.
    3. Bustince, H. & Jurio, A. & Pradera, A. & Mesiar, R. & Beliakov, G., 2013. "Generalization of the weighted voting method using penalty functions constructed via faithful restricted dissimilarity functions," European Journal of Operational Research, Elsevier, vol. 225(3), pages 472-478.
    4. Liu, Fang & Zhang, Wei-Guo & Zhang, Li-Hua, 2014. "Consistency analysis of triangular fuzzy reciprocal preference relations," European Journal of Operational Research, Elsevier, vol. 235(3), pages 718-726.
    5. Cabrerizo, Francisco Javier & Herrera-Viedma, Enrique & Pedrycz, Witold, 2013. "A method based on PSO and granular computing of linguistic information to solve group decision making problems defined in heterogeneous contexts," European Journal of Operational Research, Elsevier, vol. 230(3), pages 624-633.
    6. Przybyła-Kasperek, Małgorzata & Wakulicz-Deja, Alicja, 2016. "The strength of coalition in a dispersed decision support system with negotiations," European Journal of Operational Research, Elsevier, vol. 252(3), pages 947-968.
    7. Wang, Zhou-Jing, 2015. "A note on “A goal programming model for incomplete interval multiplicative preference relations and its application in group decision-making”," European Journal of Operational Research, Elsevier, vol. 247(3), pages 867-871.
    8. Liu Fang & Peng Yanan & Zhang Weiguo & Pedrycz Witold, 2017. "On Consistency in AHP and Fuzzy AHP," Journal of Systems Science and Information, De Gruyter, vol. 5(2), pages 128-147, April.
    9. Gong, Zaiwu & Guo, Weiwei & Herrera-Viedma, Enrique & Gong, Zejun & Wei, Guo, 2020. "Consistency and consensus modeling of linear uncertain preference relations," European Journal of Operational Research, Elsevier, vol. 283(1), pages 290-307.
    10. Meimei Xia & Jian Chen, 2015. "Studies on Interval Multiplicative Preference Relations and Their Application to Group Decision Making," Group Decision and Negotiation, Springer, vol. 24(1), pages 115-144, January.
    11. Wang, Zhou-Jing & Li, Kevin W., 2015. "A multi-step goal programming approach for group decision making with incomplete interval additive reciprocal comparison matrices," European Journal of Operational Research, Elsevier, vol. 242(3), pages 890-900.
    12. Xia, Meimei & Chen, Jian, 2015. "Multi-criteria group decision making based on bilateral agreements," European Journal of Operational Research, Elsevier, vol. 240(3), pages 756-764.
    13. Brunelli, Matteo & Fedrizzi, Michele, 2015. "Boundary properties of the inconsistency of pairwise comparisons in group decisions," European Journal of Operational Research, Elsevier, vol. 240(3), pages 765-773.
    14. Kedong Yin & Benshuo Yang & Xuemei Li, 2018. "Multiple Attribute Group Decision-Making Methods Based on Trapezoidal Fuzzy Two-Dimensional Linguistic Partitioned Bonferroni Mean Aggregation Operators," IJERPH, MDPI, vol. 15(2), pages 1-23, January.
    15. Zeshui Xu & Xiaoqiang Cai, 2014. "Deriving Weights from Interval Multiplicative Preference Relations in Group Decision Making," Group Decision and Negotiation, Springer, vol. 23(4), pages 695-713, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Zeshui & Chen, Jian, 2008. "Some models for deriving the priority weights from interval fuzzy preference relations," European Journal of Operational Research, Elsevier, vol. 184(1), pages 266-280, January.
    2. Zeshui Xu & Xiaoqiang Cai, 2014. "Deriving Weights from Interval Multiplicative Preference Relations in Group Decision Making," Group Decision and Negotiation, Springer, vol. 23(4), pages 695-713, July.
    3. Wang, Ying-Ming & Elhag, Taha M.S., 2007. "A goal programming method for obtaining interval weights from an interval comparison matrix," European Journal of Operational Research, Elsevier, vol. 177(1), pages 458-471, February.
    4. Hocine, Amine & Kouaissah, Noureddine, 2020. "XOR analytic hierarchy process and its application in the renewable energy sector," Omega, Elsevier, vol. 97(C).
    5. Guo, Min & Yang, Jian-Bo & Chin, Kwai-Sang & Wang, Hongwei, 2007. "Evidential reasoning based preference programming for multiple attribute decision analysis under uncertainty," European Journal of Operational Research, Elsevier, vol. 182(3), pages 1294-1312, November.
    6. Liu, Fang & Zhang, Wei-Guo & Zhang, Li-Hua, 2014. "Consistency analysis of triangular fuzzy reciprocal preference relations," European Journal of Operational Research, Elsevier, vol. 235(3), pages 718-726.
    7. Ahn, Byeong Seok, 2017. "The analytic hierarchy process with interval preference statements," Omega, Elsevier, vol. 67(C), pages 177-185.
    8. Podinovski, Vladislav V., 2007. "Interval articulation of superiority and precise elicitation of priorities," European Journal of Operational Research, Elsevier, vol. 180(1), pages 406-417, July.
    9. Wang, Zhou-Jing & Li, Kevin W., 2015. "A multi-step goal programming approach for group decision making with incomplete interval additive reciprocal comparison matrices," European Journal of Operational Research, Elsevier, vol. 242(3), pages 890-900.
    10. Mikhailov, L., 2004. "A fuzzy approach to deriving priorities from interval pairwise comparison judgements," European Journal of Operational Research, Elsevier, vol. 159(3), pages 687-704, December.
    11. Zhu, Bin & Xu, Zeshui, 2014. "Stochastic preference analysis in numerical preference relations," European Journal of Operational Research, Elsevier, vol. 237(2), pages 628-633.
    12. Liu Fang & Peng Yanan & Zhang Weiguo & Pedrycz Witold, 2017. "On Consistency in AHP and Fuzzy AHP," Journal of Systems Science and Information, De Gruyter, vol. 5(2), pages 128-147, April.
    13. Zhu, Bin & Xu, Zeshui, 2014. "Analytic hierarchy process-hesitant group decision making," European Journal of Operational Research, Elsevier, vol. 239(3), pages 794-801.
    14. Xu, Dong-Ling & Yang, Jian-Bo & Wang, Ying-Ming, 2006. "The evidential reasoning approach for multi-attribute decision analysis under interval uncertainty," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1914-1943, November.
    15. Yulan Wang & Huayou Chen & Ligang Zhou, 2013. "Logarithm Compatibility of Interval Multiplicative Preference Relations with an Application to Determining the Optimal Weights of Experts in the Group Decision Making," Group Decision and Negotiation, Springer, vol. 22(4), pages 759-772, July.
    16. Li, Kevin W. & Wang, Zhou-Jing & Tong, Xiayu, 2016. "Acceptability analysis and priority weight elicitation for interval multiplicative comparison matrices," European Journal of Operational Research, Elsevier, vol. 250(2), pages 628-638.
    17. Bernasconi, Michele & Choirat, Christine & Seri, Raffaello, 2014. "Empirical properties of group preference aggregation methods employed in AHP: Theory and evidence," European Journal of Operational Research, Elsevier, vol. 232(3), pages 584-592.
    18. Virgilio López-Morales, 2018. "A Reliable Method for Consistency Improving of Interval Multiplicative Preference Relations Expressed under Uncertainty," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(05), pages 1561-1585, September.
    19. Lucas, Rochelle Irene & Promentilla, Michael Angelo & Ubando, Aristotle & Tan, Raymond Girard & Aviso, Kathleen & Yu, Krista Danielle, 2017. "An AHP-based evaluation method for teacher training workshop on information and communication technology," Evaluation and Program Planning, Elsevier, vol. 63(C), pages 93-100.
    20. Amelia Bilbao-Terol & Mar Arenas-Parra & Raquel Quiroga-García & Celia Bilbao-Terol, 2022. "An extended best–worst multiple reference point method: application in the assessment of non-life insurance companies," Operational Research, Springer, vol. 22(5), pages 5323-5362, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:218:y:2012:i:3:p:747-754. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.