IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v23y2014i3p473-477.html
   My bibliography  Save this article

Comments on: Latent Markov models: a review of a general framework for the analysis of longitudinal data with covariates

Author

Listed:
  • Leonard Paas

Abstract

No abstract is available for this item.

Suggested Citation

  • Leonard Paas, 2014. "Comments on: Latent Markov models: a review of a general framework for the analysis of longitudinal data with covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(3), pages 473-477, September.
  • Handle: RePEc:spr:testjl:v:23:y:2014:i:3:p:473-477
    DOI: 10.1007/s11749-014-0387-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11749-014-0387-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11749-014-0387-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luca De Angelis & Leonard J. Paas, 2013. "A dynamic analysis of stock markets using a hidden Markov model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(8), pages 1682-1700, August.
    2. S. Bacci & S. Pandolfi & F. Pennoni, 2014. "A comparison of some criteria for states selection in the latent Markov model for longitudinal data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(2), pages 125-145, June.
    3. Leonard J. Paas & Jeroen K. Vermunt & Tammo H. A. Bijmolt, 2007. "Discrete time, discrete state latent Markov modelling for assessing and predicting household acquisitions of financial products," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(4), pages 955-974, October.
    4. Tsukasa Hokimoto & Kunio Shimizu, 2014. "A non-homogeneous hidden Markov model for predicting the distribution of sea surface elevation," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(2), pages 294-319, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thøgersen, John, 2017. "Housing-related lifestyle and energy saving: A multi-level approach," Energy Policy, Elsevier, vol. 102(C), pages 73-87.
    2. Thøgersen, John, 2018. "Transport-related lifestyle and environmentally-friendly travel mode choices: A multi-level approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 107(C), pages 166-186.
    3. Klaus G. Grunert & Yanfeng Zhou & Marija Banovic & Natascha Loebnitz, 2021. "Supermarket competence in emergent markets: Conceptualization, measurement, effects, and policy implications," Journal of Consumer Affairs, Wiley Blackwell, vol. 55(4), pages 1633-1659, December.
    4. Leonard Paas & Tammo Bijmolt & Jeroen Vermunt, 2015. "Long-term developments of respondent financial product portfolios in the EU: a multilevel latent class analysis," METRON, Springer;Sapienza Università di Roma, vol. 73(2), pages 249-262, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hans Jørn Juhl & Morten H. J. Fenger & John Thøgersen, 2017. "Will the Consistent Organic Food Consumer Step Forward? An Empirical Analysis," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 44(3), pages 519-535.
    2. Fulvia Pennoni & Ewa Genge, 2020. "Analysing the course of public trust via hidden Markov models: a focus on the Polish society," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(2), pages 399-425, June.
    3. Francesca Bassi & Fulvia Pennoni & Luca Rossetto, 2020. "The Italian market of sparkling wines: Latent variable models for brand positioning, customer loyalty, and transitions across brands' preferences," Agribusiness, John Wiley & Sons, Ltd., vol. 36(4), pages 542-567, October.
    4. Silvia Bacci & Francesco Bartolucci & Giulia Bettin & Claudia Pigini, 2017. "A mixture growth model for migrants' remittances: An application to the German Socio-Economic Panel," Mo.Fi.R. Working Papers 145, Money and Finance Research group (Mo.Fi.R.) - Univ. Politecnica Marche - Dept. Economic and Social Sciences.
    5. Simon DeDeo, 2016. "Conflict and Computation on Wikipedia: A Finite-State Machine Analysis of Editor Interactions," Future Internet, MDPI, vol. 8(3), pages 1-23, July.
    6. Marc A. Scott & Kaushik Mohan & Jacques‐Antoine Gauthier, 2020. "Model‐based clustering and analysis of life history data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 1231-1251, June.
    7. Spezia, Luigi, 2020. "Bayesian variable selection in non-homogeneous hidden Markov models through an evolutionary Monte Carlo method," Computational Statistics & Data Analysis, Elsevier, vol. 143(C).
    8. Giorgio Eduardo Montanari & Marco Doretti & Maria Francesca Marino, 2022. "Model-based two-way clustering of second-level units in ordinal multilevel latent Markov models," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(2), pages 457-485, June.
    9. Montanari, Giorgio E. & Doretti, Marco & Bartolucci, Francesco, 2017. "A multilevel latent Markov model for the evaluation of nursing homes' performance," MPRA Paper 80691, University Library of Munich, Germany.
    10. David Aristei & Silvia Bacci & Francesco Bartolucci & Silvia Pandolfi, 2021. "A bivariate finite mixture growth model with selection," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(3), pages 759-793, September.
    11. Beatrice Foroni & Luca Merlo & Lea Petrella, 2023. "Quantile and expectile copula-based hidden Markov regression models for the analysis of the cryptocurrency market," Papers 2307.06400, arXiv.org.
    12. Solomon Zena Walelign & Mariève Pouliot & Helle Overgaard Larsen & Carsten Smith-Hall, 2015. "A novel approach to dynamic livelihood clustering: Empirical evidence from Nepal," IFRO Working Paper 2015/09, University of Copenhagen, Department of Food and Resource Economics.
    13. Philippe Carette & Marie-Anne Guerry, 2022. "Markov models for duration-dependent transitions: selecting the states using duration values or duration intervals?," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(5), pages 1203-1223, December.
    14. F. Bartolucci & A. Farcomeni & F. Pennoni, 2014. "Latent Markov models: a review of a general framework for the analysis of longitudinal data with covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(3), pages 433-465, September.
    15. Beatrice Foroni & Luca Merlo & Lea Petrella, 2024. "Hidden Markov graphical models with state-dependent generalized hyperbolic distributions," Papers 2412.03668, arXiv.org.
    16. Dylan Molenaar & Paul Boeck, 2018. "Response Mixture Modeling: Accounting for Heterogeneity in Item Characteristics across Response Times," Psychometrika, Springer;The Psychometric Society, vol. 83(2), pages 279-297, June.
    17. Luca De Angelis & Leonard J. Paas, 2013. "A dynamic analysis of stock markets using a hidden Markov model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(8), pages 1682-1700, August.
    18. Giorgio E. Montanari & Silvia Pandolfi, 2018. "Evaluation of long-term health care services through a latent Markov model with covariates," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(1), pages 151-173, March.
    19. Tsukasa Hokimoto & Kunio Shimizu, 2014. "A non-homogeneous hidden Markov model for predicting the distribution of sea surface elevation," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(2), pages 294-319, February.
    20. Fulvia Pennoni & Francesco Bartolucci & Gianfranco Forte & Ferdinando Ametrano, 2022. "Exploring the dependencies among main cryptocurrency log‐returns: A hidden Markov model," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 51(1), February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:23:y:2014:i:3:p:473-477. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.