IDEAS home Printed from https://ideas.repec.org/a/spr/sumafo/v29y2021i2d10.1007_s00550-021-00518-4.html
   My bibliography  Save this article

Energetischer Aufwand der Bereitstellung von Primärkupfer für Deutschland
[Energy demand of the supply of primary copper for Germany]

Author

Listed:
  • Nadine Rötzer

    (Hochschule Pforzheim)

Abstract

Zusammenfassung Die geologisch verfügbare Menge an Metallen wie Kupfer wird kontrovers diskutiert. Die Rohstoffpolitik sollte sich besser am eigentlich einschränkenden Faktor, der erforderlichen Energie zur Rohstoffbereitstellung, statt an dieser spekulativen Diskussion orientieren. Dazu ist ein Verständnis des energetischen Aufwands und seiner Einflussfaktoren unerlässlich. In der vorliegenden Arbeit wird ein generisches Modell der Kupfergewinnung vorgestellt und der kumulierte Energieaufwand (KEA) sowie das Treibhausgaspotential (GWP) der Primärkupferbereitstellung für Deutschland ermittelt. Der mittels des Modells berechnete KEA beträgt 40 MJ/kg Cu, das GWP 3,3 kg CO2-Äq/kg Cu. Eine detaillierte Betrachtung zeigt, dass KEA und GWP des importierten Kupfers abhängig von der Bezugsquelle deutlich variieren. Die Bezugsquelle und die mit ihr einhergehenden geologischen und technischen Parameter stellen somit wichtige Einflussfaktoren hinsichtlich des energetischen Aufwands und der Emission von Treibhausgasen dar. Neben den Bezugsquellen spielt auch die Art des importierten Guts, d. h. Kupferkonzentrat oder Kupferkathode, eine Rolle. Der Transportaufwand ist beim Import von Kupferkonzentrat aufgrund dessen geringen Metallgehalts deutlich höher. Unter gleichen technischen Voraussetzungen ist es daher sinnvoll, dass die metallurgische Behandlung möglichst in der Nähe der Minen stattfindet. Dies gilt es jedoch im Einzelfall und unter Berücksichtigung weiterer z. B. rohstoffpolitischer Aspekte zu prüfen.

Suggested Citation

  • Nadine Rötzer, 2021. "Energetischer Aufwand der Bereitstellung von Primärkupfer für Deutschland [Energy demand of the supply of primary copper for Germany]," NachhaltigkeitsManagementForum | Sustainability Management Forum, Springer, vol. 29(2), pages 77-91, June.
  • Handle: RePEc:spr:sumafo:v:29:y:2021:i:2:d:10.1007_s00550-021-00518-4
    DOI: 10.1007/s00550-021-00518-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00550-021-00518-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00550-021-00518-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kleijn, René & van der Voet, Ester & Kramer, Gert Jan & van Oers, Lauran & van der Giesen, Coen, 2011. "Metal requirements of low-carbon power generation," Energy, Elsevier, vol. 36(9), pages 5640-5648.
    2. Northey, S. & Mohr, S. & Mudd, G.M. & Weng, Z. & Giurco, D., 2014. "Modelling future copper ore grade decline based on a detailed assessment of copper resources and mining," Resources, Conservation & Recycling, Elsevier, vol. 83(C), pages 190-201.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daina Paulikas & Steven Katona & Erika Ilves & Saleem H. Ali, 2022. "Deep‐sea nodules versus land ores: A comparative systems analysis of mining and processing wastes for battery‐metal supply chains," Journal of Industrial Ecology, Yale University, vol. 26(6), pages 2154-2177, December.
    2. Hache, Emmanuel & Simoën, Marine & Seck, Gondia Sokhna & Bonnet, Clément & Jabberi, Aymen & Carcanague, Samuel, 2020. "The impact of future power generation on cement demand: An international and regional assessment based on climate scenarios," International Economics, Elsevier, vol. 163(C), pages 114-133.
    3. Jacques, Pierre & Delannoy, Louis & Andrieu, Baptiste & Yilmaz, Devrim & Jeanmart, Hervé & Godin, Antoine, 2023. "Assessing the economic consequences of an energy transition through a biophysical stock-flow consistent model," Ecological Economics, Elsevier, vol. 209(C).
    4. Kimon Keramidas & Silvana Mima & Adrien Bidaud, 2024. "Opportunities and roadblocks in the decarbonisation of the global steel sector: A demand and production modelling approach," Post-Print hal-04383385, HAL.
    5. Elshkaki, Ayman & Graedel, T.E., 2015. "Solar cell metals and their hosts: A tale of oversupply and undersupply," Applied Energy, Elsevier, vol. 158(C), pages 167-177.
    6. Fu, Xinkai & Ueland, Stian M. & Olivetti, Elsa, 2017. "Econometric modeling of recycled copper supply," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 219-226.
    7. Harmsen, J.H.M. & Roes, A.L. & Patel, M.K., 2013. "The impact of copper scarcity on the efficiency of 2050 global renewable energy scenarios," Energy, Elsevier, vol. 50(C), pages 62-73.
    8. Kim, Junbeum & Guillaume, Bertrand & Chung, Jinwook & Hwang, Yongwoo, 2015. "Critical and precious materials consumption and requirement in wind energy system in the EU 27," Applied Energy, Elsevier, vol. 139(C), pages 327-334.
    9. Samadi, Sascha & Gröne, Marie-Christine & Schneidewind, Uwe & Luhmann, Hans-Jochen & Venjakob, Johannes & Best, Benjamin, 2017. "Sufficiency in energy scenario studies: Taking the potential benefits of lifestyle changes into account," Technological Forecasting and Social Change, Elsevier, vol. 124(C), pages 126-134.
    10. Femke J. M. M. Nijsse & Jean-Francois Mercure & Nadia Ameli & Francesca Larosa & Sumit Kothari & Jamie Rickman & Pim Vercoulen & Hector Pollitt, 2023. "The momentum of the solar energy transition," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    11. Wang, Peng & Li, Wen & Kara, Sami, 2017. "Cradle-to-cradle modeling of the future steel flow in China," Resources, Conservation & Recycling, Elsevier, vol. 117(PA), pages 45-57.
    12. Moreno-Leiva, Simón & Haas, Jannik & Nowak, Wolfgang & Kracht, Willy & Eltrop, Ludger & Breyer, Christian, 2021. "Integration of seawater pumped storage and desalination in multi-energy systems planning: The case of copper as a key material for the energy transition," Applied Energy, Elsevier, vol. 299(C).
    13. Zerrahn, Alexander, 2017. "Wind Power and Externalities," Ecological Economics, Elsevier, vol. 141(C), pages 245-260.
    14. He, Rui-fang & Zhong, Mei-rui & Huang, Jian-bai, 2021. "The dynamic effects of renewable-energy and fossil-fuel technological progress on metal consumption in the electric power industry," Resources Policy, Elsevier, vol. 71(C).
    15. Aramendia, Emmanuel & Heun, Matthew K. & Brockway, Paul E. & Taylor, Peter G., 2022. "Developing a Multi-Regional Physical Supply Use Table framework to improve the accuracy and reliability of energy analysis," Applied Energy, Elsevier, vol. 310(C).
    16. Antal, Miklós, 2014. "Green goals and full employment: Are they compatible?," Ecological Economics, Elsevier, vol. 107(C), pages 276-286.
    17. Pihl, Erik & Kushnir, Duncan & Sandén, Björn & Johnsson, Filip, 2012. "Material constraints for concentrating solar thermal power," Energy, Elsevier, vol. 44(1), pages 944-954.
    18. de Kleijne, Kiane & James, Jebin & Hanssen, Steef V. & van Zelm, Rosalie, 2020. "Environmental benefits of urea production from basic oxygen furnace gas," Applied Energy, Elsevier, vol. 270(C).
    19. Arvesen, Anders & Hauan, Ingrid Bjerke & Bolsøy, Bernhard Mikal & Hertwich, Edgar G., 2015. "Life cycle assessment of transport of electricity via different voltage levels: A case study for Nord-Trøndelag county in Norway," Applied Energy, Elsevier, vol. 157(C), pages 144-151.
    20. Fizaine, Florian & Court, Victor, 2015. "Renewable electricity producing technologies and metal depletion: A sensitivity analysis using the EROI," Ecological Economics, Elsevier, vol. 110(C), pages 106-118.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sumafo:v:29:y:2021:i:2:d:10.1007_s00550-021-00518-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.