IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v65y2024i7d10.1007_s00362-024-01546-0.html
   My bibliography  Save this article

A high-dimensional single-index regression for interactions between treatment and covariates

Author

Listed:
  • Hyung Park

    (New York University School of Medicine)

  • Thaddeus Tarpey

    (New York University School of Medicine)

  • Eva Petkova

    (New York University School of Medicine)

  • R. Todd Ogden

    (Columbia University)

Abstract

This paper explores a methodology for dimension reduction in regression models for a treatment outcome, specifically to capture covariates’ moderating impact on the treatment-outcome association. The motivation behind this stems from the field of precision medicine, where a comprehensive understanding of the interactions between a treatment variable and pretreatment covariates is essential for developing individualized treatment regimes (ITRs). We provide a review of sufficient dimension reduction methods suitable for capturing treatment-covariate interactions and establish connections with linear model-based approaches for the proposed model. Within the framework of single-index regression models, we introduce a sparse estimation method for a dimension reduction vector to tackle the challenges posed by high-dimensional covariate data. Our methods offer insights into dimension reduction techniques specifically for interaction analysis, by providing a semiparametric framework for approximating the minimally sufficient subspace for interactions.

Suggested Citation

  • Hyung Park & Thaddeus Tarpey & Eva Petkova & R. Todd Ogden, 2024. "A high-dimensional single-index regression for interactions between treatment and covariates," Statistical Papers, Springer, vol. 65(7), pages 4025-4056, September.
  • Handle: RePEc:spr:stpapr:v:65:y:2024:i:7:d:10.1007_s00362-024-01546-0
    DOI: 10.1007/s00362-024-01546-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-024-01546-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-024-01546-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    2. Baqun Zhang & Anastasios A. Tsiatis & Eric B. Laber & Marie Davidian, 2012. "A Robust Method for Estimating Optimal Treatment Regimes," Biometrics, The International Biometric Society, vol. 68(4), pages 1010-1018, December.
    3. Ichimura, Hidehiko & Lee, Sokbae, 2010. "Characterization of the asymptotic distribution of semiparametric M-estimators," Journal of Econometrics, Elsevier, vol. 159(2), pages 252-266, December.
    4. Yanyuan Ma & Liping Zhu, 2012. "A Semiparametric Approach to Dimension Reduction," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 168-179, March.
    5. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    6. S. A. Murphy, 2003. "Optimal dynamic treatment regimes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 331-355, May.
    7. Yingcun Xia & Howell Tong & W. K. Li & Li‐Xing Zhu, 2002. "An adaptive estimation of dimension reduction space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 363-410, August.
    8. Wei Luo & Yeying Zhu & Debashis Ghosh, 2017. "On estimating regression-based causal effects using sufficient dimension reduction," Biometrika, Biometrika Trust, vol. 104(1), pages 51-65.
    9. Efstathia Bura & R. Dennis Cook, 2001. "Estimating the structural dimension of regressions via parametric inverse regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 393-410.
    10. Li-Ping Zhu & Lin-Yi Qian & Jin-Guan Lin, 2011. "Variable selection in a class of single-index models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(6), pages 1277-1293, December.
    11. Radchenko, Peter, 2015. "High dimensional single index models," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 266-282.
    12. repec:hal:journl:peer-00741628 is not listed on IDEAS
    13. Stoker, Thomas M, 1986. "Consistent Estimation of Scaled Coefficients," Econometrica, Econometric Society, vol. 54(6), pages 1461-1481, November.
    14. Yin, Xiangrong & Li, Bing & Cook, R. Dennis, 2008. "Successive direction extraction for estimating the central subspace in a multiple-index regression," Journal of Multivariate Analysis, Elsevier, vol. 99(8), pages 1733-1757, September.
    15. Lu Tian & Ash A. Alizadeh & Andrew J. Gentles & Robert Tibshirani, 2014. "A Simple Method for Estimating Interactions Between a Treatment and a Large Number of Covariates," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1517-1532, December.
    16. Pradeep Ravikumar & John Lafferty & Han Liu & Larry Wasserman, 2009. "Sparse additive models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(5), pages 1009-1030, November.
    17. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    18. Shi, Chengchun & Fan, Ailin & Song, Rui & Lu, Wenbin, 2018. "High-dimensional A-learning for optimal dynamic treatment regimes," LSE Research Online Documents on Economics 102113, London School of Economics and Political Science, LSE Library.
    19. Shi, Chengchun & Song, Rui & Lu, Wenbin, 2016. "Robust learning for optimal treatment decision with NP-dimensionality," LSE Research Online Documents on Economics 102114, London School of Economics and Political Science, LSE Library.
    20. Wang, Qin & Yin, Xiangrong, 2008. "A nonlinear multi-dimensional variable selection method for high dimensional data: Sparse MAVE," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4512-4520, May.
    21. Hyung Park & Eva Petkova & Thaddeus Tarpey & R. Todd Ogden, 2021. "A constrained single‐index regression for estimating interactions between a treatment and covariates," Biometrics, The International Biometric Society, vol. 77(2), pages 506-518, June.
    22. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hyung Park & Eva Petkova & Thaddeus Tarpey & R. Todd Ogden, 2021. "A constrained single‐index regression for estimating interactions between a treatment and covariates," Biometrics, The International Biometric Society, vol. 77(2), pages 506-518, June.
    2. Wang, Pei & Yin, Xiangrong & Yuan, Qingcong & Kryscio, Richard, 2021. "Feature filter for estimating central mean subspace and its sparse solution," Computational Statistics & Data Analysis, Elsevier, vol. 163(C).
    3. Muxuan Liang & Menggang Yu, 2023. "Relative contrast estimation and inference for treatment recommendation," Biometrics, The International Biometric Society, vol. 79(4), pages 2920-2932, December.
    4. Rekabdarkolaee, Hossein Moradi & Boone, Edward & Wang, Qin, 2017. "Robust estimation and variable selection in sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 108(C), pages 146-157.
    5. Zhang, Hong-Fan, 2021. "Minimum Average Variance Estimation with group Lasso for the multivariate response Central Mean Subspace," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    6. Hyung G. Park & Danni Wu & Eva Petkova & Thaddeus Tarpey & R. Todd Ogden, 2023. "Bayesian Index Models for Heterogeneous Treatment Effects on a Binary Outcome," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 15(2), pages 397-418, July.
    7. Wu, Runxiong & Chen, Xin, 2021. "MM algorithms for distance covariance based sufficient dimension reduction and sufficient variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
    8. Michael C Knaus & Michael Lechner & Anthony Strittmatter, 2021. "Machine learning estimation of heterogeneous causal effects: Empirical Monte Carlo evidence," The Econometrics Journal, Royal Economic Society, vol. 24(1), pages 134-161.
    9. Weng, Jiaying, 2022. "Fourier transform sparse inverse regression estimators for sufficient variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    10. Zeyu Bian & Erica E. M. Moodie & Susan M. Shortreed & Sahir Bhatnagar, 2023. "Variable selection in regression‐based estimation of dynamic treatment regimes," Biometrics, The International Biometric Society, vol. 79(2), pages 988-999, June.
    11. Weibin Mo & Yufeng Liu, 2022. "Efficient learning of optimal individualized treatment rules for heteroscedastic or misspecified treatment‐free effect models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 440-472, April.
    12. Adam Ciarleglio & Eva Petkova & Todd Ogden & Thaddeus Tarpey, 2018. "Constructing treatment decision rules based on scalar and functional predictors when moderators of treatment effect are unknown," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1331-1356, November.
    13. Yunquan Song & Zitong Li & Minglu Fang, 2022. "Robust Variable Selection Based on Penalized Composite Quantile Regression for High-Dimensional Single-Index Models," Mathematics, MDPI, vol. 10(12), pages 1-17, June.
    14. Bhatnagar, Sahir R. & Lu, Tianyuan & Lovato, Amanda & Olds, David L. & Kobor, Michael S. & Meaney, Michael J. & O'Donnell, Kieran & Yang, Archer Y. & Greenwood, Celia M.T., 2023. "A sparse additive model for high-dimensional interactions with an exposure variable," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    15. Yao, Weixin & Wang, Qin, 2013. "Robust variable selection through MAVE," Computational Statistics & Data Analysis, Elsevier, vol. 63(C), pages 42-49.
    16. Xia Zheng & Yaohua Rong & Ling Liu & Weihu Cheng, 2021. "A More Accurate Estimation of Semiparametric Logistic Regression," Mathematics, MDPI, vol. 9(19), pages 1-12, September.
    17. Zifang Guo & Lexin Li & Wenbin Lu & Bing Li, 2015. "Groupwise Dimension Reduction via Envelope Method," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1515-1527, December.
    18. Jianbo Li & Yuan Li & Riquan Zhang, 2017. "B spline variable selection for the single index models," Statistical Papers, Springer, vol. 58(3), pages 691-706, September.
    19. Qingyuan Zhao & Dylan S. Small & Ashkan Ertefaie, 2022. "Selective inference for effect modification via the lasso," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 382-413, April.
    20. He, Yong & Zhang, Xinsheng & Zhang, Liwen, 2018. "Variable selection for high dimensional Gaussian copula regression model: An adaptive hypothesis testing procedure," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 132-150.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:65:y:2024:i:7:d:10.1007_s00362-024-01546-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.