IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v99y2008i8p1733-1757.html
   My bibliography  Save this article

Successive direction extraction for estimating the central subspace in a multiple-index regression

Author

Listed:
  • Yin, Xiangrong
  • Li, Bing
  • Cook, R. Dennis

Abstract

In this paper we propose a dimension reduction method for estimating the directions in a multiple-index regression based on information extraction. This extends the recent work of Yin and Cook [X. Yin, R.D. Cook, Direction estimation in single-index regression, Biometrika 92 (2005) 371-384] who introduced the method and used it to estimate the direction in a single-index regression. While a formal extension seems conceptually straightforward, there is a fundamentally new aspect of our extension: We are able to show that, under the assumption of elliptical predictors, the estimation of multiple-index regressions can be decomposed into successive single-index estimation problems. This significantly reduces the computational complexity, because the nonparametric procedure involves only a one-dimensional search at each stage. In addition, we developed a permutation test to assist in estimating the dimension of a multiple-index regression.

Suggested Citation

  • Yin, Xiangrong & Li, Bing & Cook, R. Dennis, 2008. "Successive direction extraction for estimating the central subspace in a multiple-index regression," Journal of Multivariate Analysis, Elsevier, vol. 99(8), pages 1733-1757, September.
  • Handle: RePEc:eee:jmvana:v:99:y:2008:i:8:p:1733-1757
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(08)00022-5
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhu, Yu & Zeng, Peng, 2006. "Fourier Methods for Estimating the Central Subspace and the Central Mean Subspace in Regression," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1638-1651, December.
    2. Yingcun Xia & Howell Tong & W. K. Li & Li-Xing Zhu, 2002. "An adaptive estimation of dimension reduction space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 363-410.
    3. Xiangrong Yin & R. Dennis Cook, 2005. "Direction estimation in single-index regressions," Biometrika, Biometrika Trust, vol. 92(2), pages 371-384, June.
    4. Chunrong Ai, 1997. "A Semiparametric Maximum Likelihood Estimator," Econometrica, Econometric Society, vol. 65(4), pages 933-964, July.
    5. Cook, R. Dennis & Ni, Liqiang, 2005. "Sufficient Dimension Reduction via Inverse Regression: A Minimum Discrepancy Approach," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 410-428, June.
    6. Francesca Chiaromonte & R. Cook, 2002. "Sufficient Dimension Reduction and Graphics in Regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 54(4), pages 768-795, December.
    7. Delecroix, Michel & Härdle, Wolfgang & Hristache, Marian, 2003. "Efficient estimation in conditional single-index regression," Journal of Multivariate Analysis, Elsevier, vol. 86(2), pages 213-226, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Tao & Zhu, Lixing, 2013. "Sparse sufficient dimension reduction using optimal scoring," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 223-232.
    2. Dong, Yuexiao & Yu, Zhou, 2012. "Dimension reduction for the conditional kth moment via central solution space," Journal of Multivariate Analysis, Elsevier, vol. 112(C), pages 207-218.
    3. Park, Jin-Hong & Bandyopadhyay, Dipankar & Letourneau, Elizabeth, 2014. "Examining deterrence of adult sex crimes: A semi-parametric intervention time-series approach," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 198-207.
    4. Zeng, Bilin & Yu, Zhou & Wen, Xuerong Meggie, 2015. "A note on cumulative mean estimation," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 322-327.
    5. Yoo, Jae Keun, 2015. "A theoretical note on optimal sufficient dimension reduction with singularity," Statistics & Probability Letters, Elsevier, vol. 99(C), pages 109-113.
    6. Luo, Wei & Cai, Xizhen, 2016. "A new estimator for efficient dimension reduction in regression," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 236-249.
    7. Li, Lexin & Yin, Xiangrong, 2009. "Longitudinal data analysis using sufficient dimension reduction method," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4106-4115, October.
    8. Yu, Zhou & Dong, Yuexiao & Guo, Ranwei, 2013. "On determining the structural dimension via directional regression," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 987-992.
    9. repec:eee:csdana:v:115:y:2017:i:c:p:67-78 is not listed on IDEAS
    10. Tao, Chenyang & Feng, Jianfeng, 2017. "Canonical kernel dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 131-148.
    11. Paris, Quentin, 2014. "Minimax adaptive dimension reduction for regression," Journal of Multivariate Analysis, Elsevier, vol. 128(C), pages 186-202.
    12. Brian J. Reich & Howard D. Bondell & Lexin Li, 2011. "Sufficient Dimension Reduction via Bayesian Mixture Modeling," Biometrics, The International Biometric Society, vol. 67(3), pages 886-895, September.
    13. Ross Iaci & T.N. Sriram & Xiangrong Yin, 2010. "Multivariate Association and Dimension Reduction: A Generalization of Canonical Correlation Analysis," Biometrics, The International Biometric Society, vol. 66(4), pages 1107-1118, December.
    14. Iaci, Ross & Yin, Xiangrong & Zhu, Lixing, 2016. "The Dual Central Subspaces in dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 178-189.
    15. repec:eee:csdana:v:113:y:2017:i:c:p:441-456 is not listed on IDEAS
    16. Wang, Qin & Yao, Weixin, 2012. "An adaptive estimation of MAVE," Journal of Multivariate Analysis, Elsevier, vol. 104(1), pages 88-100, February.
    17. Lian, Heng & Li, Gaorong, 2014. "Series expansion for functional sufficient dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 150-165.
    18. Yu, Zhou & Zhu, Lixing & Wen, Xuerong Meggie, 2012. "On model-free conditional coordinate tests for regressions," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 61-72.
    19. Wang, Qin & Yin, Xiangrong, 2011. "Estimation of inverse mean: An orthogonal series approach," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1656-1664, April.
    20. repec:bla:biomet:v:73:y:2017:i:2:p:529-539 is not listed on IDEAS
    21. Zhu, Li-Ping & Yu, Zhou & Zhu, Li-Xing, 2010. "A sparse eigen-decomposition estimation in semiparametric regression," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 976-986, April.
    22. Rekabdarkolaee, Hossein Moradi & Boone, Edward & Wang, Qin, 2017. "Robust estimation and variable selection in sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 108(C), pages 146-157.
    23. Artemiou, Andreas & Tian, Lipu, 2015. "Using sliced inverse mean difference for sufficient dimension reduction," Statistics & Probability Letters, Elsevier, vol. 106(C), pages 184-190.
    24. Sheng, Wenhui & Yin, Xiangrong, 2013. "Direction estimation in single-index models via distance covariance," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 148-161.
    25. Yu, Zhou & Dong, Yuexiao & Huang, Mian, 2014. "General directional regression," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 94-104.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:99:y:2008:i:8:p:1733-1757. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.