IDEAS home Printed from
   My bibliography  Save this article

On estimating regression-based causal effects using sufficient dimension reduction


  • Wei Luo
  • Yeying Zhu
  • Debashis Ghosh


SUMMARY In many causal inference problems the parameter of interest is the regression causal effect, defined as the conditional mean difference in the potential outcomes given covariates. In this paper we discuss how sufficient dimension reduction can be used to aid causal inference, and we propose a new estimator of the regression causal effect inspired by minimum average variance estimation. The estimator requires a weaker common support condition than propensity score-based approaches, and can be used to estimate the average causal effect, for which it is shown to be asymptotically super-efficient. Its finite-sample properties are illustrated by simulation.

Suggested Citation

  • Wei Luo & Yeying Zhu & Debashis Ghosh, 2017. "On estimating regression-based causal effects using sufficient dimension reduction," Biometrika, Biometrika Trust, vol. 104(1), pages 51-65.
  • Handle: RePEc:oup:biomet:v:104:y:2017:i:1:p:51-65.

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Yingcun Xia & Howell Tong & W. K. Li & Li‐Xing Zhu, 2002. "An adaptive estimation of dimension reduction space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 363-410, August.
    2. Liu, Xuejing & Yu, Zhou & Wen, Xuerong Meggie & Paige, Robert, 2015. "On testing common indices for two multi-index models: A link-free approach," Journal of Multivariate Analysis, Elsevier, vol. 136(C), pages 75-85.
    3. van der Laan Mark J. & Rubin Daniel, 2006. "Targeted Maximum Likelihood Learning," The International Journal of Biostatistics, De Gruyter, vol. 2(1), pages 1-40, December.
    4. Kosuke Imai & Marc Ratkovic, 2014. "Covariate balancing propensity score," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(1), pages 243-263, January.
    5. Ghosh, Debashis, 2011. "Propensity score modelling in observational studies using dimension reduction methods," Statistics & Probability Letters, Elsevier, vol. 81(7), pages 813-820, July.
    6. van der Laan Mark J. & Gruber Susan, 2010. "Collaborative Double Robust Targeted Maximum Likelihood Estimation," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-71, May.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. repec:eee:jmvana:v:168:y:2018:i:c:p:48-62 is not listed on IDEAS


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:104:y:2017:i:1:p:51-65.. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Oxford University Press) or (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.