IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v51y2010i4p789-812.html
   My bibliography  Save this article

Linear statistical inference for global and local minimum variance portfolios

Author

Listed:
  • Gabriel Frahm

Abstract

No abstract is available for this item.

Suggested Citation

  • Gabriel Frahm, 2010. "Linear statistical inference for global and local minimum variance portfolios," Statistical Papers, Springer, vol. 51(4), pages 789-812, December.
  • Handle: RePEc:spr:stpapr:v:51:y:2010:i:4:p:789-812
    DOI: 10.1007/s00362-008-0170-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00362-008-0170-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00362-008-0170-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Klein, Roger W. & Bawa, Vijay S., 1976. "The effect of estimation risk on optimal portfolio choice," Journal of Financial Economics, Elsevier, vol. 3(3), pages 215-231, June.
    2. Ravi Jagannathan & Tongshu Ma, 2003. "Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps," Journal of Finance, American Finance Association, vol. 58(4), pages 1651-1683, August.
    3. Green, Richard C & Hollifield, Burton, 1992. "When Will Mean-Variance Efficient Portfolios Be Well Diversified?," Journal of Finance, American Finance Association, vol. 47(5), pages 1785-1809, December.
    4. Alexander Kempf & Christoph Memmel, 2006. "Estimating the global Minimum Variance Portfolio," Schmalenbach Business Review (sbr), LMU Munich School of Management, vol. 58(4), pages 332-348, October.
    5. Frost, Peter A. & Savarino, James E., 1986. "An Empirical Bayes Approach to Efficient Portfolio Selection," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 21(3), pages 293-305, September.
    6. Ravi Jagannathan & Tongshu Ma, 2003. "Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps," Journal of Finance, American Finance Association, vol. 58(4), pages 1651-1684, August.
    7. J. Tobin, 1958. "Liquidity Preference as Behavior Towards Risk," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 25(2), pages 65-86.
    8. Gourieroux, Christian & Holly, Alberto & Monfort, Alain, 1982. "Likelihood Ratio Test, Wald Test, and Kuhn-Tucker Test in Linear Models with Inequality Constraints on the Regression Parameters," Econometrica, Econometric Society, vol. 50(1), pages 63-80, January.
    9. Okhrin, Yarema & Schmid, Wolfgang, 2006. "Distributional properties of portfolio weights," Journal of Econometrics, Elsevier, vol. 134(1), pages 235-256, September.
    10. Frahm, Gabriel, 2007. "Testing for the best alternative with an application to performance measurement," Discussion Papers in Econometrics and Statistics 7/07, University of Cologne, Institute of Econometrics and Statistics.
    11. Grauer, Robert R. & Shen, Frederick C., 2000. "Do constraints improve portfolio performance?," Journal of Banking & Finance, Elsevier, vol. 24(8), pages 1253-1274, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhinyuza, Stanislas & Bodnar, Taras & Lindholm, Mathias, 2020. "A test on the location of the tangency portfolio on the set of feasible portfolios," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    2. Chiu, Wan-Yi & Jiang, Ching-Hai, 2016. "On the weight sign of the global minimum variance portfolio," Finance Research Letters, Elsevier, vol. 19(C), pages 241-246.
    3. Ruili Sun & Tiefeng Ma & Shuangzhe Liu, 2020. "Portfolio selection: shrinking the time-varying inverse conditional covariance matrix," Statistical Papers, Springer, vol. 61(6), pages 2583-2604, December.
    4. Chiu, Wan-Yi, 2022. "Another look at portfolio optimization with mental accounts," Applied Mathematics and Computation, Elsevier, vol. 419(C).
    5. Thomas Conlon & John Cotter & Iason Kynigakis, 2021. "Machine Learning and Factor-Based Portfolio Optimization," Papers 2107.13866, arXiv.org.
    6. Chiu, Wan-Yi, 2022. "Stepwise expanding the frontier one asset at a time," Finance Research Letters, Elsevier, vol. 46(PA).
    7. Ruili Sun & Tiefeng Ma & Shuangzhe Liu & Milind Sathye, 2019. "Improved Covariance Matrix Estimation for Portfolio Risk Measurement: A Review," JRFM, MDPI, vol. 12(1), pages 1-34, March.
    8. Frahm, Gabriel & Wiechers, Christof, 2011. "On the diversification of portfolios of risky assets," Discussion Papers in Econometrics and Statistics 2/11, University of Cologne, Institute of Econometrics and Statistics.
    9. Yinpeng Zhang & Zhixin Liu & Xueying Yu, 2017. "The Diversification Benefits of Including Carbon Assets in Financial Portfolios," Sustainability, MDPI, vol. 9(3), pages 1-13, March.
    10. Carlos Trucíos & Mauricio Zevallos & Luiz K. Hotta & André A. P. Santos, 2019. "Covariance Prediction in Large Portfolio Allocation," Econometrics, MDPI, vol. 7(2), pages 1-24, May.
    11. Konstantin Glombek, 2014. "Statistical Inference for High-Dimensional Global Minimum Variance Portfolios," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 845-865, December.
    12. Golosnoy, Vasyl & Schmid, Wolfgang & Seifert, Miriam Isabel & Lazariv, Taras, 2020. "Statistical inferences for realized portfolio weights," Econometrics and Statistics, Elsevier, vol. 14(C), pages 49-62.
    13. Wickern, Tobias, 2011. "Confidence in prior knowledge: Calibration and impact on portfolio performance," Discussion Papers in Econometrics and Statistics 7/11, University of Cologne, Institute of Econometrics and Statistics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gabriel Frahm & Tobias Wickern & Christof Wiechers, 2012. "Multiple tests for the performance of different investment strategies," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(3), pages 343-383, July.
    2. Istvan Varga-Haszonits & Fabio Caccioli & Imre Kondor, 2016. "Replica approach to mean-variance portfolio optimization," Papers 1606.08679, arXiv.org.
    3. Thomas J. Brennan & Andrew W. Lo, 2010. "Impossible Frontiers," Management Science, INFORMS, vol. 56(6), pages 905-923, June.
    4. Frahm, Gabriel & Memmel, Christoph, 2008. "Dominating estimators for the global minimum variance portfolio," Discussion Papers in Econometrics and Statistics 2/08, University of Cologne, Institute of Econometrics and Statistics.
    5. Frahm, Gabriel & Wiechers, Christof, 2011. "On the diversification of portfolios of risky assets," Discussion Papers in Econometrics and Statistics 2/11, University of Cologne, Institute of Econometrics and Statistics.
    6. Michele Costola & Bertrand Maillet & Zhining Yuan & Xiang Zhang, 2024. "Mean-Variance Efficient Large Portfolios : A Simple Machine Learning Heuristic Technique based on the Two-Fund Separation Theorem," Post-Print hal-04514343, HAL.
    7. Vasyl Golosnoy, 2010. "No-transaction bounds and estimation risk," Quantitative Finance, Taylor & Francis Journals, vol. 10(5), pages 487-493.
    8. Behr, Patrick & Guettler, Andre & Miebs, Felix, 2013. "On portfolio optimization: Imposing the right constraints," Journal of Banking & Finance, Elsevier, vol. 37(4), pages 1232-1242.
    9. Ruili Sun & Tiefeng Ma & Shuangzhe Liu & Milind Sathye, 2019. "Improved Covariance Matrix Estimation for Portfolio Risk Measurement: A Review," JRFM, MDPI, vol. 12(1), pages 1-34, March.
    10. Frahm, Gabriel, 2007. "Linear statistical inference for global and local minimum variance portfolios," Discussion Papers in Econometrics and Statistics 1/07, University of Cologne, Institute of Econometrics and Statistics.
    11. Frahm, Gabriel & Memmel, Christoph, 2010. "Dominating estimators for minimum-variance portfolios," Journal of Econometrics, Elsevier, vol. 159(2), pages 289-302, December.
    12. Varga-Haszonits, Istvan & Caccioli, Fabio & Kondor, Imre, 2016. "Replica approach to mean-variance portfolio optimization," LSE Research Online Documents on Economics 68955, London School of Economics and Political Science, LSE Library.
    13. Vasyl Golosnoy & Yarema Okhrin, 2007. "Multivariate Shrinkage for Optimal Portfolio Weights," The European Journal of Finance, Taylor & Francis Journals, vol. 13(5), pages 441-458.
    14. Candelon, B. & Hurlin, C. & Tokpavi, S., 2012. "Sampling error and double shrinkage estimation of minimum variance portfolios," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
    15. Simaan, Majeed & Simaan, Yusif & Tang, Yi, 2018. "Estimation error in mean returns and the mean-variance efficient frontier," International Review of Economics & Finance, Elsevier, vol. 56(C), pages 109-124.
    16. Kolm, Petter N. & Tütüncü, Reha & Fabozzi, Frank J., 2014. "60 Years of portfolio optimization: Practical challenges and current trends," European Journal of Operational Research, Elsevier, vol. 234(2), pages 356-371.
    17. Penaranda, Francisco, 2007. "Portfolio choice beyond the traditional approach," LSE Research Online Documents on Economics 24481, London School of Economics and Political Science, LSE Library.
    18. Lorenzo Garlappi & Raman Uppal & Tan Wang, 2007. "Portfolio Selection with Parameter and Model Uncertainty: A Multi-Prior Approach," The Review of Financial Studies, Society for Financial Studies, vol. 20(1), pages 41-81, January.
    19. Wachter, Jessica A. & Warusawitharana, Missaka, 2009. "Predictable returns and asset allocation: Should a skeptical investor time the market?," Journal of Econometrics, Elsevier, vol. 148(2), pages 162-178, February.
    20. Imre Kondor & G'abor Papp & Fabio Caccioli, 2016. "Analytic solution to variance optimization with no short-selling," Papers 1612.07067, arXiv.org, revised Jan 2017.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:51:y:2010:i:4:p:789-812. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.