IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v33y2024i1d10.1007_s10260-023-00728-8.html
   My bibliography  Save this article

A Functional approach for constructing dynamic Composite Indicators

Author

Listed:
  • Annalina Sarra

    (University ”G. d’Annunzio”)

  • Eugenia Nissi

    (University ”G. d’Annunzio”)

  • Adelia Evangelista

    (University ”G. d’Annunzio”)

  • Tonio Di Battista

    (University ”G. d’Annunzio”)

Abstract

This paper contributes to the research on the development of comparable composite indicators by introducing a Functional Weighted Malmquist Productive Index that allows for comparative trend analysis. In analogy with entropy-based weighted methods, this novel dynamic indicator is derived by measuring the degree of diversification of the single method through a family of diversity indices. The paper has the merit of proposing a new dynamic composite indicator that supplements the analysis with Functional Data Analysis (FDA) tools that provide us with useful information about the order and dynamics of the composite index trajectories. The simulation study set up in this paper raises doubts about the robustness of the entropy-based weighted methods while the application of the new index to well-being dataset highlights its practical appeal.

Suggested Citation

  • Annalina Sarra & Eugenia Nissi & Adelia Evangelista & Tonio Di Battista, 2024. "A Functional approach for constructing dynamic Composite Indicators," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 33(1), pages 173-204, March.
  • Handle: RePEc:spr:stmapp:v:33:y:2024:i:1:d:10.1007_s10260-023-00728-8
    DOI: 10.1007/s10260-023-00728-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10260-023-00728-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10260-023-00728-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Giorgio Calcagnini & Francesco Perugini, 2019. "A Well-Being Indicator for the Italian Provinces," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 142(1), pages 149-177, February.
    2. Diamantopoulos, Adamantios & Riefler, Petra & Roth, Katharina P., 2008. "Advancing formative measurement models," Journal of Business Research, Elsevier, vol. 61(12), pages 1203-1218, December.
    3. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    4. Tim J. Coelli & D. S. Prasada Rao, 2005. "Total factor productivity growth in agriculture: a Malmquist index analysis of 93 countries, 1980–2000," Agricultural Economics, International Association of Agricultural Economists, vol. 32(s1), pages 115-134, January.
    5. Färe, Rolf & Karagiannis, Giannis & Hasannasab, Maryam & Margaritis, Dimitris, 2019. "A benefit-of-the-doubt model with reverse indicators," European Journal of Operational Research, Elsevier, vol. 278(2), pages 394-400.
    6. Marc Fleurbaey, 2009. "Beyond GDP: The Quest for a Measure of Social Welfare," Journal of Economic Literature, American Economic Association, vol. 47(4), pages 1029-1075, December.
    7. Badea, Anca Costescu & Rocco S., Claudio M. & Tarantola, Stefano & Bolado, Ricardo, 2011. "Composite indicators for security of energy supply using ordered weighted averaging," Reliability Engineering and System Safety, Elsevier, vol. 96(6), pages 651-662.
    8. Caves, Douglas W & Christensen, Laurits R & Diewert, W Erwin, 1982. "The Economic Theory of Index Numbers and the Measurement of Input, Output, and Productivity," Econometrica, Econometric Society, vol. 50(6), pages 1393-1414, November.
    9. Cook, Wade D. & Seiford, Larry M., 2009. "Data envelopment analysis (DEA) - Thirty years on," European Journal of Operational Research, Elsevier, vol. 192(1), pages 1-17, January.
    10. L Cherchye & W Moesen & N Rogge & T Van Puyenbroeck & M Saisana & A Saltelli & R Liska & S Tarantola, 2008. "Creating composite indicators with DEA and robustness analysis: the case of the Technology Achievement Index," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(2), pages 239-251, February.
    11. Cracolici, Maria Francesca & Cuffaro, Miranda & Lacagnina, Valerio, 2018. "Assessment of Sustainable Well-being in the Italian Regions: An Activity Analysis Model," Ecological Economics, Elsevier, vol. 143(C), pages 105-110.
    12. Antonio Cuevas & Manuel Febrero & Ricardo Fraiman, 2007. "Robust estimation and classification for functional data via projection-based depth notions," Computational Statistics, Springer, vol. 22(3), pages 481-496, September.
    13. Ricardo Fraiman & Graciela Muniz, 2001. "Trimmed means for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 10(2), pages 419-440, December.
    14. Salvatore Greco & Alessio Ishizaka & Menelaos Tasiou & Gianpiero Torrisi, 2019. "On the Methodological Framework of Composite Indices: A Review of the Issues of Weighting, Aggregation, and Robustness," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 141(1), pages 61-94, January.
    15. M. Saisana & A. Saltelli & S. Tarantola, 2005. "Uncertainty and sensitivity analysis techniques as tools for the quality assessment of composite indicators," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 168(2), pages 307-323, March.
    16. Yuxin Zhu & Dazuo Tian & Feng Yan, 2020. "Effectiveness of Entropy Weight Method in Decision-Making," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-5, March.
    17. Sinéad Keogh & Stephen O’Neill & Kieran Walsh, 2021. "Composite Measures for Assessing Multidimensional Social Exclusion in Later Life: Conceptual and Methodological Challenges," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 155(2), pages 389-410, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chao Shi & Kenneth C. Land, 2021. "The Data Envelopment Analysis and Equal Weights/Minimax Methods of Composite Social Indicator Construction: a Methodological Study of Data Sensitivity and Robustness," Applied Research in Quality of Life, Springer;International Society for Quality-of-Life Studies, vol. 16(4), pages 1689-1716, August.
    2. Annalina Sarra & Eugenia Nissi, 2020. "A Spatial Composite Indicator for Human and Ecosystem Well-Being in the Italian Urban Areas," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 148(2), pages 353-377, April.
    3. Greco, Salvatore & Ishizaka, Alessio & Resce, Giuliano & Torrisi, Gianpiero, 2017. "Is the Grass Always Greener on the Other Side of the fence? Composite Index of Well-Being Taking into Account the Local Relative Appreciations in Better Life Index," MPRA Paper 82718, University Library of Munich, Germany.
    4. Giuseppe Coco & Raffaele Lagravinese & Giuliano Resce, 2020. "Beyond the weights: a multicriteria approach to evaluate inequality in education," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 18(4), pages 469-489, December.
    5. Cantone, Giulio Giacomo & Tomaselli, Venera, 2024. "On the Coherence of Composite Indexes: Multiversal Model and Specification Analysis for an Index of Well-Being," MetaArXiv d5y26, Center for Open Science.
    6. Mai, Nhat Chi, 2015. "Efficiency of the banking system in Vietnam under financial liberalization," OSF Preprints qsf6d, Center for Open Science.
    7. Eugenia Nissi & Annalina Sarra, 2018. "A Measure of Well-Being Across the Italian Urban Areas: An Integrated DEA-Entropy Approach," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 136(3), pages 1183-1209, April.
    8. Milica Maricic & Jose A. Egea & Veljko Jeremic, 2019. "A Hybrid Enhanced Scatter Search—Composite I-Distance Indicator (eSS-CIDI) Optimization Approach for Determining Weights Within Composite Indicators," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 144(2), pages 497-537, July.
    9. Greco, Salvatore & Ishizaka, Alessio & Tasiou, Menelaos & Torrisi, Gianpiero, 2018. "σ-µ efficiency analysis: A new methodology for evaluating units through composite indices," MPRA Paper 83569, University Library of Munich, Germany.
    10. Barnabé Walheer, 2018. "Cost Malmquist productivity index: an output-specific approach for group comparison," Journal of Productivity Analysis, Springer, vol. 49(1), pages 79-94, February.
    11. Fusco, Elisa, 2023. "Potential improvements approach in composite indicators construction: The Multi-directional Benefit of the Doubt model," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).
    12. Khatab Alqararah, 2023. "Assessing the robustness of composite indicators: the case of the Global Innovation Index," Journal of Innovation and Entrepreneurship, Springer, vol. 12(1), pages 1-22, December.
    13. Houyem Zrelli & Abdullah H. Alsharif & Iskander Tlili, 2020. "Malmquist Indexes of Productivity Change in Tunisian Manufacturing Industries," Sustainability, MDPI, vol. 12(4), pages 1-20, February.
    14. Xianmei Wang & Hanhui Hu, 2017. "Sustainability in Chinese Higher Educational Institutions’ Social Science Research: A Performance Interface toward Efficiency," Sustainability, MDPI, vol. 9(11), pages 1-18, October.
    15. Laurens CHERCHYE & Willem MOESEN & Nicky ROGGE & Tom VAN PUYENBROECK, 2009. "Constructing a knowledge economy composite indicator with imprecise data," Working Papers of Department of Economics, Leuven ces09.15, KU Leuven, Faculty of Economics and Business (FEB), Department of Economics, Leuven.
    16. Giuliano Resce & Fritz Schiltz, 2021. "Sustainable Development in Europe: A Multicriteria Decision Analysis," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 67(2), pages 509-529, June.
    17. Greco, Salvatore & Ishizaka, Alessio & Tasiou, Menelaos & Torrisi, Gianpiero, 2019. "Sigma-Mu efficiency analysis: A methodology for evaluating units through composite indicators," European Journal of Operational Research, Elsevier, vol. 278(3), pages 942-960.
    18. Md Ali & K. Klein, 2014. "Water Use Efficiency and Productivity of the Irrigation Districts in Southern Alberta," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 2751-2766, August.
    19. Tae Hoon Oum & Katsuhiro Yamaguchi & Yuichiro Yoshida, 2011. "Efficiency Measurement Theory and its Application to Airport Benchmarking," Chapters, in: André de Palma & Robin Lindsey & Emile Quinet & Roger Vickerman (ed.), A Handbook of Transport Economics, chapter 13, Edward Elgar Publishing.
    20. Yongjun Shen & Elke Hermans & Tom Brijs & Geert Wets, 2013. "Data Envelopment Analysis for Composite Indicators: A Multiple Layer Model," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 114(2), pages 739-756, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:33:y:2024:i:1:d:10.1007_s10260-023-00728-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.