IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v26y2017i3d10.1007_s10260-016-0375-6.html
   My bibliography  Save this article

$$D_s$$ D s -optimality in copula models

Author

Listed:
  • Elisa Perrone

    (IST Austria)

  • Andreas Rappold

    (Johannes Kepler University of Linz)

  • Werner G. Müller

    (Johannes Kepler University of Linz)

Abstract

Optimum experimental design theory has recently been extended for parameter estimation in copula models. The use of these models allows one to gain in flexibility by considering the model parameter set split into marginal and dependence parameters. However, this separation also leads to the natural issue of estimating only a subset of all model parameters. In this work, we treat this problem with the application of the $$D_s$$ D s -optimality to copula models. First, we provide an extension of the corresponding equivalence theory. Then, we analyze a wide range of flexible copula models to highlight the usefulness of $$D_s$$ D s -optimality in many possible scenarios. Finally, we discuss how the usage of the introduced design criterion also relates to the more general issue of copula selection and optimal design for model discrimination.

Suggested Citation

  • Elisa Perrone & Andreas Rappold & Werner G. Müller, 2017. "$$D_s$$ D s -optimality in copula models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(3), pages 403-418, August.
  • Handle: RePEc:spr:stmapp:v:26:y:2017:i:3:d:10.1007_s10260-016-0375-6
    DOI: 10.1007/s10260-016-0375-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10260-016-0375-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10260-016-0375-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. López‐Fidalgo & C. Tommasi & P. C. Trandafir, 2007. "An optimal experimental design criterion for discriminating between non‐normal models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(2), pages 231-242, April.
    2. Denman, N.G. & McGree, J.M. & Eccleston, J.A. & Duffull, S.B., 2011. "Design of experiments for bivariate binary responses modelled by Copula functions," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1509-1520, April.
    3. Sungwook Kim & Nancy Flournoy, 2015. "Optimal experimental design for systems with bivariate failures under a bivariate Weibull function," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 64(3), pages 413-432, April.
    4. Daniel Berg, 2009. "Copula goodness-of-fit testing: an overview and power comparison," The European Journal of Finance, Taylor & Francis Journals, vol. 15(7-8), pages 675-701.
    5. Dariusz Uciński & Barbara Bogacka, 2005. "T‐optimum designs for discrimination between two multiresponse dynamic models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(1), pages 3-18, February.
    6. Roger Nelsen, 2007. "Extremes of nonexchangeability," Statistical Papers, Springer, vol. 48(4), pages 695-695, October.
    7. MICHIELS, Frederik & DE SCHEPPER, Ann, 2010. "A new graphical tool for copula selection," Working Papers 2010004, University of Antwerp, Faculty of Business and Economics.
    8. Christian Genest & Johanna Nešlehová & Johanna Ziegel, 2011. "Rejoinder on: Inference in multivariate Archimedean copula models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 290-292, August.
    9. Capéraà, Philippe & Fougères, Anne-Laure & Genest, Christian, 2000. "Bivariate Distributions with Given Extreme Value Attractor," Journal of Multivariate Analysis, Elsevier, vol. 72(1), pages 30-49, January.
    10. Genest, Christian & Rémillard, Bruno & Beaudoin, David, 2009. "Goodness-of-fit tests for copulas: A review and a power study," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 199-213, April.
    11. Fabrizio Durante, 2009. "Construction of non-exchangeable bivariate distribution functions," Statistical Papers, Springer, vol. 50(2), pages 383-391, March.
    12. Steffen Grønneberg & Nils Lid Hjort, 2014. "The Copula Information Criteria," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(2), pages 436-459, June.
    13. Edward Frees & Emiliano Valdez, 1998. "Understanding Relationships Using Copulas," North American Actuarial Journal, Taylor & Francis Journals, vol. 2(1), pages 1-25.
    14. Charpentier, A. & Fougères, A.-L. & Genest, C. & Nešlehová, J.G., 2014. "Multivariate Archimax copulas," Journal of Multivariate Analysis, Elsevier, vol. 126(C), pages 118-136.
    15. Christian Genest & Johanna Nešlehová & Johanna Ziegel, 2011. "Inference in multivariate Archimedean copula models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 223-256, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laura Deldossi & Silvia Angela Osmetti & Chiara Tommasi, 2019. "Optimal design to discriminate between rival copula models for a bivariate binary response," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 147-165, March.
    2. Patton, Andrew J., 2012. "A review of copula models for economic time series," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 4-18.
    3. Quessy, Jean-François & Bahraoui, Tarik, 2014. "Weak convergence of empirical and bootstrapped C-power processes and application to copula goodness-of-fit," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 16-36.
    4. Hofert, Marius, 2021. "Right-truncated Archimedean and related copulas," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 79-91.
    5. Fabrizio Durante & Erich Klement & Carlo Sempi & Manuel Úbeda-Flores, 2010. "Measures of non-exchangeability for bivariate random vectors," Statistical Papers, Springer, vol. 51(3), pages 687-699, September.
    6. Hobæk Haff, Ingrid, 2012. "Comparison of estimators for pair-copula constructions," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 91-105.
    7. Górecki, Jan & Hofert, Marius & Okhrin, Ostap, 2021. "Outer power transformations of hierarchical Archimedean copulas: Construction, sampling and estimation," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
    8. Patton, Andrew, 2013. "Copula Methods for Forecasting Multivariate Time Series," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 899-960, Elsevier.
    9. Travkin, Alexandr, 2013. "Pair copula constructions in portfolio optimization ploblem," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 32(4), pages 110-133.
    10. Gabriel GAIDUCHEVICI, 2015. "A Method For Systemic Risk Estimation Based On Cds Indices," Review of Economic and Business Studies, Alexandru Ioan Cuza University, Faculty of Economics and Business Administration, issue 15, pages 103-124, June.
    11. Fang, Y. & Madsen, L., 2013. "Modified Gaussian pseudo-copula: Applications in insurance and finance," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 292-301.
    12. Di Bernardino Elena & Rullière Didier, 2013. "On certain transformations of Archimedean copulas: Application to the non-parametric estimation of their generators," Dependence Modeling, De Gruyter, vol. 1(2013), pages 1-36, October.
    13. Elena Di Bernardino & Didier Rullière, 2015. "Estimation of multivariate critical layers: Applications to rainfall data," Post-Print hal-00940089, HAL.
    14. Kojadinovic, Ivan, 2017. "Some copula inference procedures adapted to the presence of ties," Computational Statistics & Data Analysis, Elsevier, vol. 112(C), pages 24-41.
    15. Penikas, H., 2010. "Financial Applications of Copula-Models," Journal of the New Economic Association, New Economic Association, issue 7, pages 24-44.
    16. Elena Di Bernardino & Didier Rullière, 2016. "On tail dependence coefficients of transformed multivariate Archimedean copulas," Post-Print hal-00992707, HAL.
    17. Juan Lin & Ximing Wu, 2015. "Smooth Tests of Copula Specifications," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 128-143, January.
    18. S. G. J. Senarathne & C. C. Drovandi & J. M. McGree, 2020. "Bayesian sequential design for Copula models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 454-478, June.
    19. Durante Fabrizio & Sánchez Juan Fernández & Sempi Carlo, 2018. "A note on bivariate Archimax copulas," Dependence Modeling, De Gruyter, vol. 6(1), pages 178-182, October.
    20. Di Bernardino Elena & Rullière Didier, 2016. "On an asymmetric extension of multivariate Archimedean copulas based on quadratic form," Dependence Modeling, De Gruyter, vol. 4(1), pages 1-20, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:26:y:2017:i:3:d:10.1007_s10260-016-0375-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.