IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v20y2011i4p451-462.html
   My bibliography  Save this article

Fitting survival data with penalized Poisson regression

Author

Listed:
  • Aris Perperoglou

Abstract

No abstract is available for this item.

Suggested Citation

  • Aris Perperoglou, 2011. "Fitting survival data with penalized Poisson regression," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 20(4), pages 451-462, November.
  • Handle: RePEc:spr:stmapp:v:20:y:2011:i:4:p:451-462
    DOI: 10.1007/s10260-011-0172-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10260-011-0172-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10260-011-0172-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. I. D. Currie & M. Durban & P. H. C. Eilers, 2006. "Generalized linear array models with applications to multidimensional smoothing," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(2), pages 259-280, April.
    2. J. C. Van Houwelingen, 2001. "Shrinkage and Penalized Likelihood as Methods to Improve Predictive Accuracy," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 55(1), pages 17-34, March.
    3. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521780506, September.
    4. Aris Perperoglou & Paul Eilers, 2010. "Penalized regression with individual deviance effects," Computational Statistics, Springer, vol. 25(2), pages 341-361, June.
    5. Eilers, Paul H.C. & Currie, Iain D. & Durban, Maria, 2006. "Fast and compact smoothing on large multidimensional grids," Computational Statistics & Data Analysis, Elsevier, vol. 50(1), pages 61-76, January.
    6. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521785167, September.
    7. Goeman Jelle J, 2008. "Autocorrelated Logistic Ridge Regression for Prediction Based on Proteomics Spectra," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(2), pages 1-12, February.
    8. Jie Huang & David Harrington, 2002. "Penalized Partial Likelihood Regression for Right-Censored Data with Bootstrap Selection of the Penalty Parameter," Biometrics, The International Biometric Society, vol. 58(4), pages 781-791, December.
    9. S. le Cessie & J. C. van Houwelingen, 1992. "Ridge Estimators in Logistic Regression," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 41(1), pages 191-201, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francesca Bruno & Fedele Greco & Massimo Ventrucci, 2016. "Non-parametric regression on compositional covariates using Bayesian P-splines," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 25(1), pages 75-88, March.
    2. Francesca Bruno & Fedele Greco & Massimo Ventrucci, 2016. "Non-parametric regression on compositional covariates using Bayesian P-splines," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 25(1), pages 75-88, March.
    3. Mariola Sánchez-González & María Durbán & Dae-Jin Lee & Isabel Cañellas & Hortensia Sixto, 2017. "Smooth additive mixed models for predicting aboveground biomass," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(1), pages 23-41, March.
    4. Martin Siebenborn & Julian Wagner, 2021. "A multigrid preconditioner for tensor product spline smoothing," Computational Statistics, Springer, vol. 36(4), pages 2379-2411, December.
    5. Rodríguez-Álvarez, María Xosé & Lee, Dae-Jin & Kneib, Thomas & Durbán, María & Eilers, Paul, 2013. "Fast algorithm for smoothing parameter selection in multidimensional generalized P-splines," DES - Working Papers. Statistics and Econometrics. WS ws133026, Universidad Carlos III de Madrid. Departamento de Estadística.
    6. Welham, S.J. & Thompson, R., 2009. "A note on bimodality in the log-likelihood function for penalized spline mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 920-931, February.
    7. Basile, Roberto & Durbán, María & Mínguez, Román & María Montero, Jose & Mur, Jesús, 2014. "Modeling regional economic dynamics: Spatial dependence, spatial heterogeneity and nonlinearities," Journal of Economic Dynamics and Control, Elsevier, vol. 48(C), pages 229-245.
    8. David O'Donnell & Alastair Rushworth & Adrian W. Bowman & E. Marian Scott & Mark Hallard, 2014. "Flexible regression models over river networks," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 63(1), pages 47-63, January.
    9. Simon N. Wood & Zheyuan Li & Gavin Shaddick & Nicole H. Augustin, 2017. "Generalized Additive Models for Gigadata: Modeling the U.K. Black Smoke Network Daily Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1199-1210, July.
    10. Adrian W. Bowman & Marco Giannitrapani & E. Marian Scott, 2009. "Spatiotemporal smoothing and sulphur dioxide trends over Europe," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(5), pages 737-752, December.
    11. Camarda, Carlo Giovanni & Durbán, María, 2008. "Goodness of fit in models for mortality data," DES - Working Papers. Statistics and Econometrics. WS ws083909, Universidad Carlos III de Madrid. Departamento de Estadística.
    12. repec:wyi:journl:002174 is not listed on IDEAS
    13. Ugarte, M.D. & Goicoa, T. & Militino, A.F. & Durbán, M., 2009. "Spline smoothing in small area trend estimation and forecasting," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3616-3629, August.
    14. Thomas Kneib & Bernhard Baumgartner & Winfried Steiner, 2007. "Semiparametric multinomial logit models for analysing consumer choice behaviour," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 91(3), pages 225-244, October.
    15. Luo Xiao & Yingxing Li & David Ruppert, 2013. "Fast bivariate P-splines: the sandwich smoother," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(3), pages 577-599, June.
    16. Otto-Sobotka, Fabian & Salvati, Nicola & Ranalli, Maria Giovanna & Kneib, Thomas, 2019. "Adaptive semiparametric M-quantile regression," Econometrics and Statistics, Elsevier, vol. 11(C), pages 116-129.
    17. Lee, Dae-Jin & Durbán, María, 2009. "P-spline anova-type interaction models for spatio-temporal smoothing," DES - Working Papers. Statistics and Econometrics. WS ws093312, Universidad Carlos III de Madrid. Departamento de Estadística.
    18. Mestekemper, Thomas & Windmann, Michael & Kauermann, Göran, 2010. "Functional hourly forecasting of water temperature," International Journal of Forecasting, Elsevier, vol. 26(4), pages 684-699, October.
    19. Naschold, Felix, 2012. "“The Poor Stay Poor”: Household Asset Poverty Traps in Rural Semi-Arid India," World Development, Elsevier, vol. 40(10), pages 2033-2043.
    20. Arthur Charpentier & Emmanuel Flachaire & Antoine Ly, 2017. "Econom\'etrie et Machine Learning," Papers 1708.06992, arXiv.org, revised Mar 2018.
    21. Hyunju Son & Youyi Fong, 2021. "Fast grid search and bootstrap‐based inference for continuous two‐phase polynomial regression models," Environmetrics, John Wiley & Sons, Ltd., vol. 32(3), May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:20:y:2011:i:4:p:451-462. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.