IDEAS home Printed from https://ideas.repec.org/p/cte/wsrepe/ws083909.html
   My bibliography  Save this paper

Goodness of fit in models for mortality data

Author

Listed:
  • Camarda, Carlo Giovanni
  • Durbán, María

Abstract

Mortality data on an aggregate level are characterized by very large sample sizes. For this reason, uninformative outcomes are evident in common Goodness-of-Fit measures. In this paper we propose a new measure that allows comparison of different mortality models even for large sample sizes. Particularly, we develop a measure which uses a null model specifically designed for mortality data. Several simulation studies and actual applications will demonstrate the performances of this new measure with special emphasis on demographic models and Pspline approach.

Suggested Citation

  • Camarda, Carlo Giovanni & Durbán, María, 2008. "Goodness of fit in models for mortality data," DES - Working Papers. Statistics and Econometrics. WS ws083909, Universidad Carlos III de Madrid. Departamento de Estadística.
  • Handle: RePEc:cte:wsrepe:ws083909
    as

    Download full text from publisher

    File URL: https://e-archivo.uc3m.es/bitstream/handle/10016/2910/ws083909.pdf?sequence=1
    Download Restriction: no

    References listed on IDEAS

    as
    1. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521785167, May.
    2. Cameron, A Colin & Windmeijer, Frank A G, 1996. "R-Squared Measures for Count Data Regression Models with Applications to Health-Care Utilization," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(2), pages 209-220, April.
    3. Veall, Michael R & Zimmermann, Klaus F, 1996. " Pseudo-R-[superscript 2] Measures for Some Common Limited Dependent Variable Models," Journal of Economic Surveys, Wiley Blackwell, vol. 10(3), pages 241-259, September.
    4. Colin Cameron, A. & Windmeijer, Frank A. G., 1997. "An R-squared measure of goodness of fit for some common nonlinear regression models," Journal of Econometrics, Elsevier, vol. 77(2), pages 329-342, April.
    5. Mittlbock, M. & Waldhor, T., 2000. "Adjustments for R2-measures for Poisson regression models," Computational Statistics & Data Analysis, Elsevier, vol. 34(4), pages 461-472, October.
    6. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521780506, May.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Goodness of fit;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:ws083909. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ana Poveda). General contact details of provider: http://portal.uc3m.es/portal/page/portal/dpto_estadistica .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.