IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

R-Squared Measures for Count Data Regression Models with Applications to Health Care Utilization

Listed author(s):
  • Cameron, A.C.
  • Windmeijer, F.A.G.

For regression models other than the linear model, R-squared type goodness-to-fit summary statistics have been constructed for particular models using a variety of methods. The authors propose an R-squared measure of goodness of fit for the class of exponential family regression models, which includes logit, probit, Poisson, geometric, gamma, and exponential. This R-squared is defined as the proportionate reduction in uncertainty, measured by Kullback-Leibler divergence, due to the inclusion of regressors. Under further conditions concerning the conditional mean function, it can also be interpreted as the fraction of uncertainty explained by the fitted model.

(This abstract was borrowed from another version of this item.)

To our knowledge, this item is not available for download. To find whether it is available, there are three options:
1. Check below under "Related research" whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a search for a similarly titled item that would be available.

Paper provided by California Davis - Institute of Governmental Affairs in its series Papers with number 93-24.

in new window

Length: 23 pages
Date of creation: 1993
Handle: RePEc:fth:caldav:93-24
Contact details of provider: Postal:

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:fth:caldav:93-24. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Thomas Krichel)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.