IDEAS home Printed from https://ideas.repec.org/a/spr/sochwe/v54y2020i4d10.1007_s00355-019-01221-6.html
   My bibliography  Save this article

Simple games versus weighted voting games: bounding the critical threshold value

Author

Listed:
  • Frits Hof

    (University of Twente)

  • Walter Kern

    (University of Twente)

  • Sascha Kurz

    (University of Bayreuth)

  • Kanstantsin Pashkovich

    (University of Ottawa)

  • Daniël Paulusma

    (Durham University)

Abstract

A simple game (N, v) is given by a set N of n players and a partition of $$2^N$$2N into a set $$\mathcal {L}$$L of losing coalitions L with value $$v(L)=0$$v(L)=0 that is closed under taking subsets and a set $$\mathcal {W}$$W of winning coalitions W with value $$v(W)=1$$v(W)=1. We let $$\alpha = \min _{p\geqslant {\varvec{0}}, p\ne {\varvec{0}}}\max _{W\in \mathcal{W}, L\in \mathcal{L}} \frac{p(L)}{p(W)}$$α=minp⩾0,p≠0maxW∈W,L∈Lp(L)p(W). It is known that the subclass of simple games with $$\alpha 0$$α0>0.

Suggested Citation

  • Frits Hof & Walter Kern & Sascha Kurz & Kanstantsin Pashkovich & Daniël Paulusma, 2020. "Simple games versus weighted voting games: bounding the critical threshold value," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 54(4), pages 609-621, April.
  • Handle: RePEc:spr:sochwe:v:54:y:2020:i:4:d:10.1007_s00355-019-01221-6
    DOI: 10.1007/s00355-019-01221-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00355-019-01221-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00355-019-01221-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Deineko, Vladimir G. & Woeginger, Gerhard J., 2006. "On the dimension of simple monotonic games," European Journal of Operational Research, Elsevier, vol. 170(1), pages 315-318, April.
    2. Bilbao, J. M. & Fernandez, J. R. & Jimenez, N. & Lopez, J. J., 2002. "Voting power in the European Union enlargement," European Journal of Operational Research, Elsevier, vol. 143(1), pages 181-196, November.
    3. Steven J. Brams & Peter C. Fishburn, 1996. "Minimal winning coalitions in weighted-majority voting games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 13(4), pages 397-417.
    4. Francesc Carreras & Josep Freixas, 2005. "On power distribution in weighted voting," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 24(2), pages 269-282, April.
    5. Josep Freixas & Sascha Kurz, 2014. "On $${\alpha }$$ α -roughly weighted games," International Journal of Game Theory, Springer;Game Theory Society, vol. 43(3), pages 659-692, August.
    6. Solymosi, Tamas & Raghavan, Tirukkannamangai E S, 1994. "An Algorithm for Finding the Nucleolus of Asignment Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 23(2), pages 119-143.
    7. Walter Kern & Daniël Paulusma, 2003. "Matching Games: The Least Core and the Nucleolus," Mathematics of Operations Research, INFORMS, vol. 28(2), pages 294-308, May.
    8. Maria Axenovich & Sonali Roy, 2010. "On the structure of minimal winning coalitions in simple voting games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 34(3), pages 429-440, March.
    9. Péter Biró & Walter Kern & Daniël Paulusma, 2012. "Computing solutions for matching games," International Journal of Game Theory, Springer;Game Theory Society, vol. 41(1), pages 75-90, February.
    10. Freixas, Josep & Puente, Maria Albina, 2008. "Dimension of complete simple games with minimum," European Journal of Operational Research, Elsevier, vol. 188(2), pages 555-568, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sascha Kurz & Nikolas Tautenhahn, 2013. "On Dedekind’s problem for complete simple games," International Journal of Game Theory, Springer;Game Theory Society, vol. 42(2), pages 411-437, May.
    2. Vijay V. Vazirani, 2022. "New Characterizations of Core Imputations of Matching and $b$-Matching Games," Papers 2202.00619, arXiv.org, revised Dec 2022.
    3. Han Xiao & Tianhang Lu & Qizhi Fang, 2021. "Approximate Core Allocations for Multiple Partners Matching Games," Papers 2107.01442, arXiv.org, revised Oct 2021.
    4. Vazirani, Vijay V., 2022. "The general graph matching game: Approximate core," Games and Economic Behavior, Elsevier, vol. 132(C), pages 478-486.
    5. F.Javier Martínez-de-Albéniz & Carles Rafels & Neus Ybern, 2015. "Insights into the nucleolus of the assignment game," UB School of Economics Working Papers 2015/333, University of Barcelona School of Economics.
    6. Han Xiao & Qizhi Fang, 2022. "Population monotonicity in matching games," Journal of Combinatorial Optimization, Springer, vol. 43(4), pages 699-709, May.
    7. Tamas Solymosi & Balazs Sziklai, 2015. "Universal Characterization Sets for the Nucleolus in Balanced Games," CERS-IE WORKING PAPERS 1512, Institute of Economics, Centre for Economic and Regional Studies.
    8. Péter Biró & Walter Kern & Daniël Paulusma, 2012. "Computing solutions for matching games," International Journal of Game Theory, Springer;Game Theory Society, vol. 41(1), pages 75-90, February.
    9. Qizhi Fang & Bo Li & Xiaohan Shan & Xiaoming Sun, 2018. "Path cooperative games," Journal of Combinatorial Optimization, Springer, vol. 36(1), pages 211-229, July.
    10. Biró, Péter & Kern, Walter & Paulusma, Daniël & Wojuteczky, Péter, 2018. "The stable fixtures problem with payments," Games and Economic Behavior, Elsevier, vol. 108(C), pages 245-268.
    11. Cheung, Wai-Shun & Ng, Tuen-Wai, 2014. "A three-dimensional voting system in Hong Kong," European Journal of Operational Research, Elsevier, vol. 236(1), pages 292-297.
    12. Gusev, Vasily V., 2023. "Set-weighted games and their application to the cover problem," European Journal of Operational Research, Elsevier, vol. 305(1), pages 438-450.
    13. Xiaotie Deng & Qizhi Fang & Xiaoxun Sun, 2009. "Finding nucleolus of flow game," Journal of Combinatorial Optimization, Springer, vol. 18(1), pages 64-86, July.
    14. Vijay V. Vazirani, 2022. "Cores of Games via Total Dual Integrality, with Applications to Perfect Graphs and Polymatroids," Papers 2209.04903, arXiv.org, revised Nov 2022.
    15. Molinero, Xavier & Riquelme, Fabián & Roura, Salvador & Serna, Maria, 2023. "On the generalized dimension and codimension of simple games," European Journal of Operational Research, Elsevier, vol. 306(2), pages 927-940.
    16. Freixas, Josep & Kurz, Sascha, 2016. "The cost of getting local monotonicity," European Journal of Operational Research, Elsevier, vol. 251(2), pages 600-612.
    17. O’Dwyer, Liam & Slinko, Arkadii, 2017. "Growth of dimension in complete simple games," Mathematical Social Sciences, Elsevier, vol. 90(C), pages 2-8.
    18. Guemmegne, Juliette T. & Pongou, Roland, 2014. "A policy-based rationalization of collective rules: Dimensionality, specialized houses, and decentralized authority," Journal of Mathematical Economics, Elsevier, vol. 52(C), pages 182-193.
    19. Xavier Molinero & Maria Serna & Marc Taberner-Ortiz, 2021. "On Weights and Quotas for Weighted Majority Voting Games," Games, MDPI, vol. 12(4), pages 1-25, December.
    20. Josep Freixas & Sascha Kurz, 2014. "On $${\alpha }$$ α -roughly weighted games," International Journal of Game Theory, Springer;Game Theory Society, vol. 43(3), pages 659-692, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sochwe:v:54:y:2020:i:4:d:10.1007_s00355-019-01221-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.