IDEAS home Printed from https://ideas.repec.org/p/isu/genres/13110.html
   My bibliography  Save this paper

On the Structure of Minimal Winning Coalitions in Simple Voting Games

Author

Listed:
  • Axenovich, Maria
  • Roy, Sonali

Abstract

According to Colemanï¾’s index of collective power, a decision rule that generates a larger number of winning coalitions imparts the collectivity a higher a priori power to act. By the virtue of the monotonicity conditions, a decision rule is totally characterized by the set of minimal winning coalitions. In this paper, we investigate the structure of the families of minimal winning coalitions corresponding to maximal and proper simple voting games (SVG).We show that if the proper and maximal SVG is swap robust and all the minimal winning coalitions are of the same size, then the SVG is a specific (up to an isomorphism) system.We also provide examples of proper SVGs to show that the number of winning coalitions is not monotone with respect to the intuitively appealing system parameters like the number of blockers, number of non-dummies or the size of the minimal blocking set.

Suggested Citation

  • Axenovich, Maria & Roy, Sonali, 2009. "On the Structure of Minimal Winning Coalitions in Simple Voting Games," Staff General Research Papers Archive 13110, Iowa State University, Department of Economics.
  • Handle: RePEc:isu:genres:13110
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. J. Freixas & M.A. Puente, 1998. "Complete games with minimum," Annals of Operations Research, Springer, vol. 84(0), pages 97-109, December.
    2. Dan S. Felsenthal & Moshé Machover, 1998. "The Measurement of Voting Power," Books, Edward Elgar Publishing, number 1489.
    3. Barua, Rana & Chakravarty, Satya R. & Roy, Sonali & Sarkar, Palash, 2004. "A characterization and some properties of the Banzhaf-Coleman-Dubey-Shapley sensitivity index," Games and Economic Behavior, Elsevier, vol. 49(1), pages 31-48, October.
    4. Josep Freixas & Xavier Molinero, 2009. "On the existence of a minimum integer representation for weighted voting systems," Annals of Operations Research, Springer, vol. 166(1), pages 243-260, February.
    5. Carreras, Francesc & Freixas, Josep, 1996. "Complete simple games," Mathematical Social Sciences, Elsevier, vol. 32(2), pages 139-155, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Frits Hof & Walter Kern & Sascha Kurz & Kanstantsin Pashkovich & Daniël Paulusma, 2020. "Simple games versus weighted voting games: bounding the critical threshold value," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 54(4), pages 609-621, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Monisankar Bishnu & Sonali Roy, 2012. "Hierarchy of players in swap robust voting games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 38(1), pages 11-22, January.
    2. Josep Freixas & Sascha Kurz, 2014. "Enumeration of weighted games with minimum and an analysis of voting power for bipartite complete games with minimum," Annals of Operations Research, Springer, vol. 222(1), pages 317-339, November.
    3. Freixas, Josep & Kurz, Sascha, 2013. "The golden number and Fibonacci sequences in the design of voting structures," European Journal of Operational Research, Elsevier, vol. 226(2), pages 246-257.
    4. Serguei Kaniovski & Sascha Kurz, 2018. "Representation-compatible power indices," Annals of Operations Research, Springer, vol. 264(1), pages 235-265, May.
    5. Sascha Kurz & Stefan Napel, 2014. "Heuristic and exact solutions to the inverse power index problem for small voting bodies," Annals of Operations Research, Springer, vol. 215(1), pages 137-163, April.
    6. Le Breton, Michel & Montero, Maria & Zaporozhets, Vera, 2012. "Voting power in the EU council of ministers and fair decision making in distributive politics," Mathematical Social Sciences, Elsevier, vol. 63(2), pages 159-173.
    7. Sascha Kurz & Nikolas Tautenhahn, 2013. "On Dedekind’s problem for complete simple games," International Journal of Game Theory, Springer;Game Theory Society, vol. 42(2), pages 411-437, May.
    8. Barua, Rana & Chakravarty, Satya R. & Roy, Sonali, 2006. "On the Coleman indices of voting power," European Journal of Operational Research, Elsevier, vol. 171(1), pages 273-289, May.
    9. Carreras, Francesc & Freixas, Josep, 2008. "On ordinal equivalence of power measures given by regular semivalues," Mathematical Social Sciences, Elsevier, vol. 55(2), pages 221-234, March.
    10. Dwight Bean, 2012. "Proportional quota weighted voting system hierarchies II," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 39(4), pages 907-918, October.
    11. Freixas, Josep & Tchantcho, Bertrand & Tedjeugang, Narcisse, 2014. "Achievable hierarchies in voting games with abstention," European Journal of Operational Research, Elsevier, vol. 236(1), pages 254-260.
    12. Freixas, Josep & Kurz, Sascha, 2014. "On minimum integer representations of weighted games," Mathematical Social Sciences, Elsevier, vol. 67(C), pages 9-22.
    13. Barua, Rana & Chakravarty, Satya R. & Sarkar, Palash, 2009. "Minimal-axiom characterizations of the Coleman and Banzhaf indices of voting power," Mathematical Social Sciences, Elsevier, vol. 58(3), pages 367-375, November.
    14. Fabrice Barthelemy & Dominique Lepelley & Mathieu Martin & Hatem Smaoui, 2021. "Dummy Players and the Quota in Weighted Voting Games," Group Decision and Negotiation, Springer, vol. 30(1), pages 43-61, February.
    15. Bertrand Mbama Engoulou & Pierre Wambo & Lawrence Diffo Lambo, 2023. "Banzhaf–Coleman–Dubey–Shapley sensitivity index for simple multichoice voting games," Annals of Operations Research, Springer, vol. 328(2), pages 1349-1364, September.
    16. Carreras, Francesc & Freixas, Josep, 2004. "A power analysis of linear games with consensus," Mathematical Social Sciences, Elsevier, vol. 48(2), pages 207-221, September.
    17. Carreras, Francesc, 2005. "A decisiveness index for simple games," European Journal of Operational Research, Elsevier, vol. 163(2), pages 370-387, June.
    18. Dwight Bean & Jane Friedman & Cameron Parker, 2010. "Proportional quota weighted voting system hierarchies," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 34(3), pages 397-410, March.
    19. Freixas, Josep & Puente, Maria Albina, 2008. "Dimension of complete simple games with minimum," European Journal of Operational Research, Elsevier, vol. 188(2), pages 555-568, July.
    20. Sascha Kurz, 2012. "On minimum sum representations for weighted voting games," Annals of Operations Research, Springer, vol. 196(1), pages 361-369, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:isu:genres:13110. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Curtis Balmer (email available below). General contact details of provider: https://edirc.repec.org/data/deiasus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.