IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article

On the probability of observing Borda’s paradox

  • William Gehrlein

    ()

  • Dominique Lepelley

    ()

Previous studies have shown that, when voters’ preferences become more internally consistent or mutually coherent, the probability of observing Condorcet’s Paradox of cyclic majorities is reduced and tends to zero, in accordance with intuition. The current study shows that the impact of an increasing degree of mutual coherence among voters’ preferences on the likelihood of observing Borda’s Paradox is much more subtle and more difficult to analyze. The degree of the impact in this case depends both on the measure of mutual coherence that is considered and on the voting rule that is used. In some circumstances, the probability that Borda’s Paradox will occur actually increases when voters’ preferences become more internally consistent.

(This abstract was borrowed from another version of this item.)

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://hdl.handle.net/10.1007/s00355-009-0415-3
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Springer & The Society for Social Choice and Welfare in its journal Social Choice and Welfare.

Volume (Year): 35 (2010)
Issue (Month): 1 (June)
Pages: 1-23

as
in new window

Handle: RePEc:spr:sochwe:v:35:y:2010:i:1:p:1-23
Contact details of provider: Web page: http://www.springer.com

Web page: http://www.unicaen.fr/recherche/mrsh/scw/

More information through EDIRC

Order Information: Web: http://www.springer.com/economics/economic+theory/journal/355

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Dominique Lepelley & Ahmed Louichi & Hatem Smaoui, 2006. "On Ehrhart Polynomials and Probability Calculations in Voting Theory," Economics Working Paper Archive (University of Rennes 1 & University of Caen) 200610, Center for Research in Economics and Management (CREM), University of Rennes 1, University of Caen and CNRS.
  2. Saari, Donald G. & Valognes, Fabrice, 1999. "The geometry of Black's single peakedness and related conditions," Journal of Mathematical Economics, Elsevier, vol. 32(4), pages 429-456, December.
  3. William V. Gehrlein & Dominique Lepelley, 2008. "The Unexpected Behavior of Plurality Rule," Post-Print hal-01243483, HAL.
  4. Wilson, Mark C. & Pritchard, Geoffrey, 2007. "Probability calculations under the IAC hypothesis," Mathematical Social Sciences, Elsevier, vol. 54(3), pages 244-256, December.
  5. Lepelley, Dominique, 1993. "On the probability of electing the Condorcet," Mathematical Social Sciences, Elsevier, vol. 25(2), pages 105-116, February.
  6. Van Newenhizen, Jill, 1992. "The Borda Method Is Most Likely to Respect the Condorcet Principle," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 2(1), pages 69-83, January.
  7. Thom Bezembinder, 1996. "The plurality majority converse under single peakedness," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 13(3), pages 365-380.
  8. William Gehrlein, 2005. "Probabilities of election outcomes with two parameters: The relative impact of unifying and polarizing candidates," Review of Economic Design, Springer;Society for Economic Design, vol. 9(4), pages 317-336, December.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:spr:sochwe:v:35:y:2010:i:1:p:1-23. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla)

or (Rebekah McClure)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.