IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-01243417.html
   My bibliography  Save this paper

The impact of voters’ preference diversity on the probability of some electoral outcomes

Author

Listed:
  • William V. Gehrlein

    (University of Delaware [Newark])

  • Issofa Moyouwou

    (MASS - Université de Yaoundé I [Yaoundé])

  • Dominique Lepelley

    () (CEMOI - Centre d'Économie et de Management de l'Océan Indien - UR - Université de La Réunion)

Abstract

Voting rules are known to exhibit various paradoxical or problematic behaviors, typically in the form of their failure to meet the Condorcet criterion or in their vulnerability to strategic voting. Our basic premise is that a decrease in the number of coalitions of voters that exist with similar preference rankings should generally lead to a reduced propensity of voting rules to yield undesired results. Surprisingly enough, conclusions that are reported by Felsenthal et al. (1990) in an early study do not corroborate this intuition. This study reconsiders and extends the Felsenthal et al. analysis by using a modified Impartial Anonymous Culture (IAC) model. It turns out that the results obtained with this probabilistic assumption are much more consistent with the stated intuitive premise.

Suggested Citation

  • William V. Gehrlein & Issofa Moyouwou & Dominique Lepelley, 2013. "The impact of voters’ preference diversity on the probability of some electoral outcomes," Post-Print hal-01243417, HAL.
  • Handle: RePEc:hal:journl:hal-01243417
    DOI: 10.1016/j.mathsocsci.2013.07.007
    Note: View the original document on HAL open archive server: https://hal.univ-reunion.fr/hal-01243417
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. William Gehrlein & Peter Fishburn, 1976. "Condorcet's paradox and anonymous preference profiles," Public Choice, Springer, vol. 26(1), pages 1-18, June.
    2. William V. Gehrlein, 2002. "Obtaining representations for probabilities of voting outcomes with effectively unlimited precision integer arithmetic," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 19(3), pages 503-512.
    3. Gehrlein, William V. & Lepelley, Dominique, 2001. "The Condorcet efficiency of Borda Rule with anonymous voters," Mathematical Social Sciences, Elsevier, vol. 41(1), pages 39-50, January.
    4. Lepelley, Dominique & Mbih, Boniface, 1987. "The proportion of coalitionally unstable situations under the plurality rule," Economics Letters, Elsevier, vol. 24(4), pages 311-315.
    5. Geoffrey Pritchard & Mark Wilson, 2007. "Exact results on manipulability of positional voting rules," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 29(3), pages 487-513, October.
    6. Dominique Lepelley & Ahmed Louichi & Hatem Smaoui, 2008. "On Ehrhart polynomials and probability calculations in voting theory," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 30(3), pages 363-383, April.
    7. Gehrlein, William V., 1982. "Condorcet efficiency and constant scoring rules," Mathematical Social Sciences, Elsevier, vol. 2(2), pages 123-130, March.
    8. Wilson, Mark C. & Pritchard, Geoffrey, 2007. "Probability calculations under the IAC hypothesis," Mathematical Social Sciences, Elsevier, vol. 54(3), pages 244-256, December.
    9. Davide Cervone & William Gehrlein & William Zwicker, 2005. "Which Scoring Rule Maximizes Condorcet Efficiency Under Iac?," Theory and Decision, Springer, vol. 58(2), pages 145-185, March.
    10. Gibbard, Allan, 1973. "Manipulation of Voting Schemes: A General Result," Econometrica, Econometric Society, vol. 41(4), pages 587-601, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mostapha Diss & Boris Tsvelikhovskiy, 2019. "Manipulable outcomes within the class of scoring voting rules," Papers 1911.09173, arXiv.org, revised Sep 2020.
    2. Moyouwou, Issofa & Tchantcho, Hugue, 2017. "Asymptotic vulnerability of positional voting rules to coalitional manipulation," Mathematical Social Sciences, Elsevier, vol. 89(C), pages 70-82.
    3. William Gehrlein & Dominique Lepelley & Issofa Moyouwou, 2015. "Voters’ preference diversity, concepts of agreement and Condorcet’s paradox," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(6), pages 2345-2368, November.
    4. Gehrlein, William V. & Lepelley, Dominique & Moyouwou, Issofa, 2016. "A note on Approval Voting and electing the Condorcet loser," Mathematical Social Sciences, Elsevier, vol. 80(C), pages 115-122.
    5. Alexander Karpov, 2017. "Preference Diversity Orderings," Group Decision and Negotiation, Springer, vol. 26(4), pages 753-774, July.
    6. Marie-Louise Lackner & Martin Lackner, 2017. "On the likelihood of single-peaked preferences," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 48(4), pages 717-745, April.
    7. Alexander Karpov, 2017. "Preference Diversity Orderings," Group Decision and Negotiation, Springer, vol. 26(4), pages 753-774, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mostapha Diss & Boris Tsvelikhovskiy, 2019. "Manipulable outcomes within the class of scoring voting rules," Papers 1911.09173, arXiv.org, revised Sep 2020.
    2. Moyouwou, Issofa & Tchantcho, Hugue, 2017. "Asymptotic vulnerability of positional voting rules to coalitional manipulation," Mathematical Social Sciences, Elsevier, vol. 89(C), pages 70-82.
    3. Mostapha Diss, 2015. "Strategic manipulability of self-selective social choice rules," Annals of Operations Research, Springer, vol. 229(1), pages 347-376, June.
    4. Wilson, Mark C. & Pritchard, Geoffrey, 2007. "Probability calculations under the IAC hypothesis," Mathematical Social Sciences, Elsevier, vol. 54(3), pages 244-256, December.
    5. William V. Gehrlein & Dominique Lepelley & Florenz Plassmann, 2016. "Should voters be required to rank candidates in an election?," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 46(4), pages 707-747, April.
    6. Eric Kamwa, 2019. "On the Likelihood of the Borda Effect: The Overall Probabilities for General Weighted Scoring Rules and Scoring Runoff Rules," Group Decision and Negotiation, Springer, vol. 28(3), pages 519-541, June.
    7. Eric Kamwa, 2018. "On the Likelihood of the Borda Effect: The Overall Probabilities for General Weighted Scoring Rules and Scoring Runoff Rules," Working Papers hal-01786590, HAL.
    8. Mostapha Diss & Ahmed Doghmi, 2016. "Multi-winner scoring election methods: Condorcet consistency and paradoxes," Public Choice, Springer, vol. 169(1), pages 97-116, October.
    9. Pritchard, Geoffrey & Wilson, Mark C., 2009. "Asymptotics of the minimum manipulating coalition size for positional voting rules under impartial culture behaviour," Mathematical Social Sciences, Elsevier, vol. 58(1), pages 35-57, July.
    10. Erik Friese & William V. Gehrlein & Dominique Lepelley & Achill Schürmann, 2017. "The impact of dependence among voters’ preferences with partial indifference," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(6), pages 2793-2812, November.
    11. Cervone, Davide P. & Dai, Ronghua & Gnoutcheff, Daniel & Lanterman, Grant & Mackenzie, Andrew & Morse, Ari & Srivastava, Nikhil & Zwicker, William S., 2012. "Voting with rubber bands, weights, and strings," Mathematical Social Sciences, Elsevier, vol. 64(1), pages 11-27.
    12. Mostapha Diss & Patrizia Pérez-Asurmendi, 2016. "Consistent collective decisions under majorities based on difference of votes," Theory and Decision, Springer, vol. 80(3), pages 473-494, March.
    13. Achill Schürmann, 2013. "Exploiting polyhedral symmetries in social choice," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 40(4), pages 1097-1110, April.
    14. Diss, Mostapha & Louichi, Ahmed & Merlin, Vincent & Smaoui, Hatem, 2012. "An example of probability computations under the IAC assumption: The stability of scoring rules," Mathematical Social Sciences, Elsevier, vol. 64(1), pages 57-66.
    15. Mostapha Diss & Patrizia Pérez-Asurmendi, 2015. "Consistent collective decisions under majorities based on difference of votes," Working Papers halshs-01241996, HAL.
    16. Gehrlein, William V., 2004. "The effectiveness of weighted scoring rules when pairwise majority rule cycles exist," Mathematical Social Sciences, Elsevier, vol. 47(1), pages 69-85, January.
    17. Yuliya Veselova, 2016. "The difference between manipulability indices in the IC and IANC models," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 46(3), pages 609-638, March.
    18. Mostapha Diss & Eric Kamwa & Issofa Moyouwou & Hatem Smaoui, 2021. "Condorcet Efficiency of General Weighted Scoring Rules Under IAC: Indifference and Abstention," Studies in Choice and Welfare, in: Mostapha Diss & Vincent Merlin (ed.), Evaluating Voting Systems with Probability Models, pages 55-73, Springer.
    19. Yuliya A. Veselova, 2020. "Does Incomplete Information Reduce Manipulability?," Group Decision and Negotiation, Springer, vol. 29(3), pages 523-548, June.
    20. Abdelhalim El Ouafdi & Dominique Lepelley & Hatem Smaoui, 2020. "Probabilities of electoral outcomes: from three-candidate to four-candidate elections," Theory and Decision, Springer, vol. 88(2), pages 205-229, March.

    More about this item

    Keywords

    Revue AERES;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-01243417. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (CCSD). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.