IDEAS home Printed from https://ideas.repec.org/a/spr/snopef/v4y2023i4d10.1007_s43069-023-00274-9.html
   My bibliography  Save this article

Integer Programming Methods to Identify Nash Equilibrium Solutions for Platform-Based Scheduling Games

Author

Listed:
  • Lucky Cho

    (Purdue University)

  • Thomas C. Sharkey

    (Clemson University)

Abstract

This paper proposes an integer programming approach to examining Nash equilibrium solutions of a game modeling freelancer platforms. This Platform-Based Scheduling Game is played by the clients who choose a single freelancer that processes their jobs and the freelancers create a schedule of work based on the clients who choose them and their preferences. In order to identify a Nash equilibrium schedule, a schedule in which no clients change their choice of freelancers based on every other client’s choice, integer programming is utilized. We create a set of integer programming constraints where there exists a one-to-one correspondence between a Nash equilibrium of the game and a feasible solution to the integer program. The one-to-one correspondence allows the integer program to find the optimal Nash equilibrium schedules for objectives that model the considerations of the platform, freelancers, and clients. It also allows us to precisely calculate the price of anarchy and price of stability, and evaluate the loss in objective function value for one stakeholder of the game when the game is optimized for another stakeholder. We show that the decentralized matching performs well for the clients and the freelancers compared to the centralized optimal matching (that arises when we do not consider the clients as independent decision-makers) but the platform can suffer heavily from allowing clients autonomy in their decision making.

Suggested Citation

  • Lucky Cho & Thomas C. Sharkey, 2023. "Integer Programming Methods to Identify Nash Equilibrium Solutions for Platform-Based Scheduling Games," SN Operations Research Forum, Springer, vol. 4(4), pages 1-27, December.
  • Handle: RePEc:spr:snopef:v:4:y:2023:i:4:d:10.1007_s43069-023-00274-9
    DOI: 10.1007/s43069-023-00274-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s43069-023-00274-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s43069-023-00274-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Doval, Laura, 2022. "Dynamically stable matching," Theoretical Economics, Econometric Society, vol. 17(2), May.
    2. Carvalho, Margarida & Lodi, Andrea & Pedroso, João.P., 2022. "Computing equilibria for integer programming games," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1057-1070.
    3. Porter, Ryan & Nudelman, Eugene & Shoham, Yoav, 2008. "Simple search methods for finding a Nash equilibrium," Games and Economic Behavior, Elsevier, vol. 63(2), pages 642-662, July.
    4. Jay Sethuraman & Chung-Piaw Teo & Liwen Qian, 2006. "Many-to-One Stable Matching: Geometry and Fairness," Mathematics of Operations Research, INFORMS, vol. 31(3), pages 581-596, August.
    5. Q. Q. Nong & G. Q. Fan & Q. Z. Fang, 2017. "A coordination mechanism for a scheduling game with parallel-batching machines," Journal of Combinatorial Optimization, Springer, vol. 33(2), pages 567-579, February.
    6. Xinsheng Xiong & Yong Zhao & Yang Chen, 2017. "A computational approach to the multi-period many-to-one matching with ties," Journal of Combinatorial Optimization, Springer, vol. 33(1), pages 183-201, January.
    7. Juliane Dunkel & Andreas S. Schulz, 2008. "On the Complexity of Pure-Strategy Nash Equilibria in Congestion and Local-Effect Games," Mathematics of Operations Research, INFORMS, vol. 33(4), pages 851-868, November.
    8. Cyril Briand & Sandra Ulrich Ngueveu & Přemysl Šůcha, 2017. "Finding an optimal Nash equilibrium to the multi-agent project scheduling problem," Journal of Scheduling, Springer, vol. 20(5), pages 475-491, October.
    9. Dominik Kress & Sebastian Meiswinkel & Erwin Pesch, 2018. "Mechanism design for machine scheduling problems: classification and literature overview," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(3), pages 583-611, July.
    10. Balireddi, Sindhura & Uhan, Nelson A., 2012. "Cost-sharing mechanisms for scheduling under general demand settings," European Journal of Operational Research, Elsevier, vol. 217(2), pages 270-277.
    11. Cole, Richard & Correa, Jose & Gkatzelis, Vasillis & Mirrokni, Vahab & Olver, Neil, 2015. "Decentralized utilitarian mechanisms for scheduling games," LSE Research Online Documents on Economics 103081, London School of Economics and Political Science, LSE Library.
    12. Cole, Richard & Correa, José R. & Gkatzelis, Vasilis & Mirrokni, Vahab & Olver, Neil, 2015. "Decentralized utilitarian mechanisms for scheduling games," Games and Economic Behavior, Elsevier, vol. 92(C), pages 306-326.
    13. Alvin E. Roth & Uriel G. Rothblum & John H. Vande Vate, 1993. "Stable Matchings, Optimal Assignments, and Linear Programming," Mathematics of Operations Research, INFORMS, vol. 18(4), pages 803-828, November.
    14. Delorme, Maxence & García, Sergio & Gondzio, Jacek & Kalcsics, Jörg & Manlove, David & Pettersson, William, 2019. "Mathematical models for stable matching problems with ties and incomplete lists," European Journal of Operational Research, Elsevier, vol. 277(2), pages 426-441.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ravindran Vijayalakshmi, Vipin & Schröder, Marc & Tamir, Tami, 2024. "Minimizing total completion time with machine-dependent priority lists," European Journal of Operational Research, Elsevier, vol. 315(3), pages 844-854.
    2. Neme, Pablo & Oviedo, Jorge, 2021. "On the set of many-to-one strongly stable fractional matchings," Mathematical Social Sciences, Elsevier, vol. 110(C), pages 1-13.
    3. Cong Chen & Paul Giessler & Akaki Mamageishvili & Matúš Mihalák & Paolo Penna, 2024. "Sequential solutions in machine scheduling games," Journal of Scheduling, Springer, vol. 27(4), pages 363-373, August.
    4. Cong Chen & Yinfeng Xu, 0. "Coordination mechanisms for scheduling selfish jobs with favorite machines," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-33.
    5. Manjunath, Vikram, 2016. "Fractional matching markets," Games and Economic Behavior, Elsevier, vol. 100(C), pages 321-336.
    6. Amin Dehghanian & Yujia Xie & Nicoleta Serban, 2024. "Identifying Socially Optimal Equilibria Using Combinatorial Properties of Nash Equilibria in Bimatrix Games," INFORMS Journal on Computing, INFORMS, vol. 36(5), pages 1261-1286, September.
    7. Chao Huang, 2022. "Two-sided matching with firms' complementary preferences," Papers 2205.05599, arXiv.org, revised May 2022.
    8. Cong Chen & Yinfeng Xu, 2020. "Coordination mechanisms for scheduling selfish jobs with favorite machines," Journal of Combinatorial Optimization, Springer, vol. 40(2), pages 333-365, August.
    9. Herbert Hamers & Flip Klijn & Marco Slikker, 2019. "Implementation of optimal schedules in outsourcing with identical suppliers," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 89(2), pages 173-187, April.
    10. Vasilis Gkatzelis & Konstantinos Kollias & Tim Roughgarden, 2016. "Optimal Cost-Sharing in General Resource Selection Games," Operations Research, INFORMS, vol. 64(6), pages 1230-1238, December.
    11. Juárez, Noelia & Neme, Pablo & Oviedo, Jorge, 2022. "Lattice structure of the random stable set in many-to-many matching markets," Games and Economic Behavior, Elsevier, vol. 132(C), pages 255-273.
    12. Gabriele Dragotto & Rosario Scatamacchia, 2023. "The Zero Regrets Algorithm: Optimizing over Pure Nash Equilibria via Integer Programming," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1143-1160, September.
    13. Tami Tamir, 2023. "Cost-sharing games in real-time scheduling systems," International Journal of Game Theory, Springer;Game Theory Society, vol. 52(1), pages 273-301, March.
    14. Kolos Csaba Ágoston & Péter Biró & Iain McBride, 2016. "Integer programming methods for special college admissions problems," Journal of Combinatorial Optimization, Springer, vol. 32(4), pages 1371-1399, November.
    15. Chao Huang, 2022. "Firm-worker hypergraphs," Papers 2211.06887, arXiv.org, revised Nov 2023.
    16. Šůcha, Přemysl & Agnetis, Alessandro & Šidlovský, Marko & Briand, Cyril, 2021. "Nash equilibrium solutions in multi-agent project scheduling with milestones," European Journal of Operational Research, Elsevier, vol. 294(1), pages 29-41.
    17. Braat, Jac & Hamers, Herbert & Klijn, Flip & Slikker, Marco, 2019. "A selfish allocation heuristic in scheduling: Equilibrium and inefficiency bound analysis," European Journal of Operational Research, Elsevier, vol. 273(2), pages 634-645.
    18. Felipe T. Muñoz & Rodrigo Linfati, 2024. "Bounding the Price of Anarchy of Weighted Shortest Processing Time Policy on Uniform Parallel Machines," Mathematics, MDPI, vol. 12(14), pages 1-12, July.
    19. Pitchaya Wiratchotisatian & Hoda Atef Yekta & Andrew C. Trapp, 2022. "Stability Representations of Many-to-One Matching Problems: An Integer Optimization Approach," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3325-3343, November.
    20. Hai Nguyen & Thành Nguyen & Alexander Teytelboym, 2021. "Stability in Matching Markets with Complex Constraints," Management Science, INFORMS, vol. 67(12), pages 7438-7454, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:snopef:v:4:y:2023:i:4:d:10.1007_s43069-023-00274-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.