IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v64y2016i6p1230-1238.html
   My bibliography  Save this article

Optimal Cost-Sharing in General Resource Selection Games

Author

Listed:
  • Vasilis Gkatzelis

    () (Department of Computer Science, Stanford University, Stanford, California 94305)

  • Konstantinos Kollias

    () (Department of Management Science and Engineering, Stanford University, Stanford, California 94305)

  • Tim Roughgarden

    () (Department of Computer Science, Stanford University, Stanford, California 94305)

Abstract

Resource selection games provide a model for a diverse collection of applications where a set of resources is matched to a set of demands. Examples include routing in traffic and in telecommunication networks, service of requests on multiple parallel queues, and acquisition of services or goods with demand-dependent prices. In reality, demands are often submitted by selfish entities (players) and congestion on the resources results in negative externalities for their users. We consider a policy maker that can set a priori rules to minimize the inefficiency induced by selfish players. For example, these rules may assume the form of scheduling policies or pricing decisions. We explore the space of such rules abstracted as cost-sharing methods. We prescribe desirable properties that the cost-sharing method should possess and prove that, in this natural design space, the cost-sharing method induced by the Shapley value minimizes the worst-case inefficiency of equilibria.

Suggested Citation

  • Vasilis Gkatzelis & Konstantinos Kollias & Tim Roughgarden, 2016. "Optimal Cost-Sharing in General Resource Selection Games," Operations Research, INFORMS, vol. 64(6), pages 1230-1238, December.
  • Handle: RePEc:inm:oropre:v:64:y:2016:i:6:p:1230-1238
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.2016.1512
    Download Restriction: no

    References listed on IDEAS

    as
    1. Hervé Moulin & Scott Shenker, 2001. "Strategyproof sharing of submodular costs:budget balance versus efficiency," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 18(3), pages 511-533.
    2. Hervé Moulin, 2008. "The price of anarchy of serial, average and incremental cost sharing," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 36(3), pages 379-405, September.
    3. Yossi Azar & Lisa Fleischer & Kamal Jain & Vahab Mirrokni & Zoya Svitkina, 2015. "Optimal Coordination Mechanisms for Unrelated Machine Scheduling," Operations Research, INFORMS, vol. 63(3), pages 489-500, June.
    4. Tobias Harks & Konstantin Miller, 2011. "The Worst-Case Efficiency of Cost Sharing Methods in Resource Allocation Games," Operations Research, INFORMS, vol. 59(6), pages 1491-1503, December.
    5. Roberto Cominetti & José R. Correa & Nicolás E. Stier-Moses, 2009. "The Impact of Oligopolistic Competition in Networks," Operations Research, INFORMS, vol. 57(6), pages 1421-1437, December.
    6. E. G. Coffman & I. Mitrani, 1980. "A Characterization of Waiting Time Performance Realizable by Single-Server Queues," Operations Research, INFORMS, vol. 28(3-part-ii), pages 810-821, June.
    7. Milchtaich, Igal, 1996. "Congestion Games with Player-Specific Payoff Functions," Games and Economic Behavior, Elsevier, vol. 13(1), pages 111-124, March.
    8. Cole, Richard & Correa, José R. & Gkatzelis, Vasilis & Mirrokni, Vahab & Olver, Neil, 2015. "Decentralized utilitarian mechanisms for scheduling games," Games and Economic Behavior, Elsevier, vol. 92(C), pages 306-326.
    9. Tobias Harks & Max Klimm, 2012. "On the Existence of Pure Nash Equilibria in Weighted Congestion Games," Mathematics of Operations Research, INFORMS, vol. 37(3), pages 419-436, August.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:64:y:2016:i:6:p:1230-1238. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mirko Janc). General contact details of provider: http://edirc.repec.org/data/inforea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.