IDEAS home Printed from https://ideas.repec.org/a/spr/sjobre/v77y2025i1d10.1007_s41471-024-00201-6.html
   My bibliography  Save this article

Developing a Smart Energy Service Canvas

Author

Listed:
  • Jennifer Günter

    (Bergische Universität Wuppertal)

  • Lukas Fabri

    (University of Applied Sciences Augsburg
    Branch Business & Information Systems Engineering of the Fraunhofer FIT)

  • Simon Wenninger

    (University of Applied Sciences Augsburg
    Branch Business & Information Systems Engineering of the Fraunhofer FIT)

  • Can Kaymakci

    (Fraunhofer Institute for Manufacturing Engineering and Automation IPA
    University of Stuttgart)

Abstract

Rising energy and CO2 prices are driving industrial companies to focus increasingly on energy efficiency and flexibility to remain competitive. Besides technical improvements, smart energy services like nonintrusive load monitoring (NILM) are promising approaches to increasing a company’s energy efficiency and flexibility potential. Despite its advantages, smart energy services are not yet widely used in practice, and service providers are cautious. Existing research investigates almost exclusively technical aspects of smart energy service applications and systems, particularly for NILM, while a business model perspective is missing. This study addresses this research gap following a design science research approach with literature research and expert interviews, and develops a business model framework—the Smart Energy Service Canvas (SESC). The SESC is a practical and empirically validated tool to formalize, structure, and implement a business idea on smart energy services.

Suggested Citation

  • Jennifer Günter & Lukas Fabri & Simon Wenninger & Can Kaymakci, 2025. "Developing a Smart Energy Service Canvas," Schmalenbach Journal of Business Research, Springer, vol. 77(1), pages 95-125, March.
  • Handle: RePEc:spr:sjobre:v:77:y:2025:i:1:d:10.1007_s41471-024-00201-6
    DOI: 10.1007/s41471-024-00201-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s41471-024-00201-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1007/s41471-024-00201-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gunther Glenk & Rebecca Meier & Stefan Reichelstein, 2021. "Cost Dynamics of Clean Energy Technologies," Schmalenbach Journal of Business Research, Springer, vol. 73(2), pages 179-206, June.
    2. Glenk, Gunther & Meier, Rebecca & Reichelstein, Stefan, 2021. "Cost dynamics of clean energy technologies," ZEW Discussion Papers 21-054, ZEW - Leibniz Centre for European Economic Research.
    3. Glenk, Gunther & Meier, Rebecca & Reichelstein, Stefan, 2021. "Clean Energy Technologies: Dynamics of Cost and Price," Research Papers 3958, Stanford University, Graduate School of Business.
    4. Carrie Armel, K. & Gupta, Abhay & Shrimali, Gireesh & Albert, Adrian, 2013. "Is disaggregation the holy grail of energy efficiency? The case of electricity," Energy Policy, Elsevier, vol. 52(C), pages 213-234.
    5. Scheubel, Christopher & Zipperle, Thomas & Tzscheutschler, Peter, 2017. "Modeling of industrial-scale hybrid renewable energy systems (HRES) – The profitability of decentralized supply for industry," Renewable Energy, Elsevier, vol. 108(C), pages 52-63.
    6. Thomas Clauß & Sven M. Laudien & Birgit Daxböck, 2014. "Service-dominant logic and the business model concept: toward a conceptual integration," International Journal of Entrepreneurship and Innovation Management, Inderscience Enterprises Ltd, vol. 18(4), pages 266-288.
    7. Antonio Ruano & Alvaro Hernandez & Jesus Ureña & Maria Ruano & Juan Garcia, 2019. "NILM Techniques for Intelligent Home Energy Management and Ambient Assisted Living: A Review," Energies, MDPI, vol. 12(11), pages 1-29, June.
    8. Elmar Ahle & Christian Meyer, 2012. "Der Weg zum Lösungsanbieter am Beispiel der Energieeffizienzberatung von Bosch Rexroth," Schmalenbach Journal of Business Research, Springer, vol. 64(65), pages 186-198, January.
    9. Ute Paukstadt & Jörg Becker, 2021. "From Energy as a Commodity to Energy as a Service—A Morphological Analysis of Smart Energy Services," Schmalenbach Journal of Business Research, Springer, vol. 73(2), pages 207-242, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin Bichler & Hans Ulrich Buhl & Johannes Knörr & Felipe Maldonado & Paul Schott & Stefan Waldherr & Martin Weibelzahl, 2022. "Electricity Markets in a Time of Change: A Call to Arms for Business Research," Schmalenbach Journal of Business Research, Springer, vol. 74(1), pages 77-102, March.
    2. Maharjan, Prapti & Hauck, Mara & Kirkels, Arjan & Buettner, Benjamin & de Coninck, Heleen, 2024. "Deriving experience curves: A structured and critical approach applied to PV sector," Technological Forecasting and Social Change, Elsevier, vol. 209(C).
    3. Gunther Friedl & Stefan Reichelstein & Amadeus Bach & Maximilian Blaschke & Lukas Kemmer, 2023. "Applications of the levelized cost concept," Journal of Business Economics, Springer, vol. 93(6), pages 1125-1148, August.
    4. Cristina Puente & Rafael Palacios & Yolanda González-Arechavala & Eugenio Francisco Sánchez-Úbeda, 2020. "Non-Intrusive Load Monitoring (NILM) for Energy Disaggregation Using Soft Computing Techniques," Energies, MDPI, vol. 13(12), pages 1-20, June.
    5. Gunther Glenk & Stefan Reichelstein, 2022. "Reversible Power-to-Gas systems for energy conversion and storage," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Arsalis, Alexandros & Papanastasiou, Panos & Georghiou, George E., 2022. "A comparative review of lithium-ion battery and regenerative hydrogen fuel cell technologies for integration with photovoltaic applications," Renewable Energy, Elsevier, vol. 191(C), pages 943-960.
    7. Schauf, Magnus & Schwenen, Sebastian, 2021. "Mills of progress grind slowly? Estimating learning rates for onshore wind energy," Energy Economics, Elsevier, vol. 104(C).
    8. Glenk, Gunther & Reichelstein, Stefan, 2022. "The economic dynamics of competing power generation sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    9. Hao Ma & Juncheng Jia & Xinhao Yang & Weipeng Zhu & Hong Zhang, 2021. "MC-NILM: A Multi-Chain Disaggregation Method for NILM," Energies, MDPI, vol. 14(14), pages 1-14, July.
    10. Chatzigeorgiou, I.M. & Andreou, G.T., 2021. "A systematic review on feedback research for residential energy behavior change through mobile and web interfaces," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    11. Zhou, Yang & Shi, Zhixiong & Shi, Zhengyu & Gao, Qing & Wu, Libo, 2019. "Disaggregating power consumption of commercial buildings based on the finite mixture model," Applied Energy, Elsevier, vol. 243(C), pages 35-46.
    12. İsmail Hakkı Çavdar & Vahit Feryad, 2021. "Efficient Design of Energy Disaggregation Model with BERT-NILM Trained by AdaX Optimization Method for Smart Grid," Energies, MDPI, vol. 14(15), pages 1-21, July.
    13. Lang, Corey & Okwelum, Edson, 2015. "The mitigating effect of strategic behavior on the net benefits of a direct load control program," Energy Economics, Elsevier, vol. 49(C), pages 141-148.
    14. Coelho, Igor M. & Coelho, Vitor N. & Luz, Eduardo J. da S. & Ochi, Luiz S. & Guimarães, Frederico G. & Rios, Eyder, 2017. "A GPU deep learning metaheuristic based model for time series forecasting," Applied Energy, Elsevier, vol. 201(C), pages 412-418.
    15. Astier, Nicolas, 2018. "Comparative feedbacks under incomplete information," Resource and Energy Economics, Elsevier, vol. 54(C), pages 90-108.
    16. Liu, Bo & Luan, Wenpeng & Yu, Yixin, 2017. "Dynamic time warping based non-intrusive load transient identification," Applied Energy, Elsevier, vol. 195(C), pages 634-645.
    17. Nicolas Astier, 2016. "Comparative Feedbacks under Incomplete Information," Working Papers hal-01465189, HAL.
    18. Krzysztof Dowalla & Piotr Bilski & Robert Łukaszewski & Augustyn Wójcik & Ryszard Kowalik, 2022. "Application of the Time-Domain Signal Analysis for Electrical Appliances Identification in the Non-Intrusive Load Monitoring," Energies, MDPI, vol. 15(9), pages 1-20, May.
    19. Matteo Caldera & Asad Hussain & Sabrina Romano & Valerio Re, 2023. "Energy-Consumption Pattern-Detecting Technique for Household Appliances for Smart Home Platform," Energies, MDPI, vol. 16(2), pages 1-23, January.
    20. Hosseini, Sayed Saeed & Agbossou, Kodjo & Kelouwani, Sousso & Cardenas, Alben, 2017. "Non-intrusive load monitoring through home energy management systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1266-1274.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sjobre:v:77:y:2025:i:1:d:10.1007_s41471-024-00201-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.