IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v113y2017i3d10.1007_s11192-017-2555-z.html
   My bibliography  Save this article

Identifying emerging research fields: a longitudinal latent semantic keyword analysis

Author

Listed:
  • Christian Weismayer

    (MODUL University Vienna)

  • Ilona Pezenka

    (University of Applied Sciences for Management & Communication)

Abstract

This study aims to gain insights into emerging research fields in the area of marketing and tourism. It provides support for the use of quantitative techniques to facilitate content analysis. The authors present a longitudinal latent semantic analysis of keywords. The proposed method is illustrated by two different examples: a scholarly journal (International Marketing Review) and conference proceedings (ENTER eTourism Conference). The methodology reveals an understanding of the current state of the art of marketing research and e-tourism by identifying neglected, popular or upcoming thematic research foci. The outcomes are compared with former results generated by traditional content analysis techniques. Findings confirm that the proposed methodology has the potential to complement qualitative content analysis, as the semantic analysis produces similar outcomes to qualitative content analysis to some extent. This paper reviews a journal’s content over a period of nearly three decades. The authors argue that the suggested methodology facilitates the analysis dramatically and can thus be simply applied on a regular basis in order to monitor topic development within a specific research domain.

Suggested Citation

  • Christian Weismayer & Ilona Pezenka, 2017. "Identifying emerging research fields: a longitudinal latent semantic keyword analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(3), pages 1757-1785, December.
  • Handle: RePEc:spr:scient:v:113:y:2017:i:3:d:10.1007_s11192-017-2555-z
    DOI: 10.1007/s11192-017-2555-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-017-2555-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-017-2555-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Grün, Bettina & Hornik, Kurt, 2011. "topicmodels: An R Package for Fitting Topic Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 40(i13).
    2. Wolfgang Glänzel & Bart Thijs, 2017. "Using hybrid methods and ‘core documents’ for the representation of clusters and topics: the astronomy dataset," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 1071-1087, May.
    3. S. Ravikumar & Ashutosh Agrahari & S. N. Singh, 2015. "Mapping the intellectual structure of scientometrics: a co-word analysis of the journal Scientometrics (2005–2010)," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(1), pages 929-955, January.
    4. Jochen Gläser & Wolfgang Glänzel & Andrea Scharnhorst, 2017. "Same data—different results? Towards a comparative approach to the identification of thematic structures in science," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 981-998, May.
    5. Fionn Murtagh & Pierre Legendre, 2014. "Ward’s Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward’s Criterion?," Journal of Classification, Springer;The Classification Society, vol. 31(3), pages 274-295, October.
    6. Theresa Velden & Kevin W. Boyack & Jochen Gläser & Rob Koopman & Andrea Scharnhorst & Shenghui Wang, 2017. "Comparison of topic extraction approaches and their results," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 1169-1221, May.
    7. Healey, Peter & Rothman, Harry & Hoch, Paul K., 1986. "An experiment in science mapping for research planning," Research Policy, Elsevier, vol. 15(5), pages 233-251, October.
    8. Hsin-Ning Su & Pei-Chun Lee, 2010. "Mapping knowledge structure by keyword co-occurrence: a first look at journal papers in Technology Foresight," Scientometrics, Springer;Akadémiai Kiadó, vol. 85(1), pages 65-79, October.
    9. Emrouznejad, Ali & Parker, Barnett R. & Tavares, Gabriel, 2008. "Evaluation of research in efficiency and productivity: A survey and analysis of the first 30 years of scholarly literature in DEA," Socio-Economic Planning Sciences, Elsevier, vol. 42(3), pages 151-157, September.
    10. Chang-Ping Hu & Ji-Ming Hu & Sheng-Li Deng & Yong Liu, 2013. "A co-word analysis of library and information science in China," Scientometrics, Springer;Akadémiai Kiadó, vol. 97(2), pages 369-382, November.
    11. Chyi-Kwei Yau & Alan Porter & Nils Newman & Arho Suominen, 2014. "Clustering scientific documents with topic modeling," Scientometrics, Springer;Akadémiai Kiadó, vol. 100(3), pages 767-786, September.
    12. Bart Thijs & Edgar Schiebel & Wolfgang Glänzel, 2013. "Do second-order similarities provide added-value in a hybrid approach?," Scientometrics, Springer;Akadémiai Kiadó, vol. 96(3), pages 667-677, September.
    13. Woo Hyoung Lee, 2008. "How to identify emerging research fields using scientometrics: An example in the field of Information Security," Scientometrics, Springer;Akadémiai Kiadó, vol. 76(3), pages 503-525, September.
    14. Shenghui Wang & Rob Koopman, 2017. "Clustering articles based on semantic similarity," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 1017-1031, May.
    15. Fritz, Heinrich & García-Escudero, Luis A. & Mayo-Iscar, Agustín, 2012. "tclust: An R Package for a Trimming Approach to Cluster Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 47(i12).
    16. Loet Leydesdorff, 1997. "Why words and co‐words cannot map the development of the sciences," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 48(5), pages 418-427, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Judit Sulyok & Beáta Fehérvölgyi & Tibor Csizmadia & Attila I. Katona & Zsolt T. Kosztyán, 2023. "Does geography matter? Implications for future tourism research in light of COVID-19," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(3), pages 1601-1637, March.
    2. Shuangqing Sheng & Wei Song & Hua Lian & Lei Ning, 2022. "Review of Urban Land Management Based on Bibliometrics," Land, MDPI, vol. 11(11), pages 1-25, November.
    3. Igor Barahona & Daría Micaela Hernández & Héctor Hugo Pérez-Villarreal & María Pilar Martínez-Ruíz, 2018. "Identifying research topics in marketing science along the past decade: a content analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(1), pages 293-312, October.
    4. Xu, Haiyun & Winnink, Jos & Yue, Zenghui & Zhang, Huiling & Pang, Hongshen, 2021. "Multidimensional Scientometric indicators for the detection of emerging research topics," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    5. Romero-Silva, Rodrigo & de Leeuw, Sander, 2021. "Learning from the past to shape the future: A comprehensive text mining analysis of OR/MS reviews," Omega, Elsevier, vol. 100(C).
    6. Davies, Andrew & Manning, Stephan & Söderlund, Jonas, 2018. "When neighboring disciplines fail to learn from each other: The case of innovation and project management research," Research Policy, Elsevier, vol. 47(5), pages 965-979.
    7. Shuo Xu & Liyuan Hao & Xin An & Hongshen Pang & Ting Li, 2020. "Review on emerging research topics with key-route main path analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 607-624, January.
    8. Zhang, Baolong & Wang, Hao & Deng, Sanhong & Su, Xinning, 2020. "Measurement and analysis of Chinese journal discriminative capacity," Journal of Informetrics, Elsevier, vol. 14(1).
    9. Inés M. Fernández-Guerrero & Zoraida Callejas & David Griol & Antonio Fernández-Cano, 2020. "Longitudinal patterns in Spanish doctoral theses on scientific medical information: a tertiary study," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(2), pages 1241-1260, August.
    10. Wenjie Wei & Hongxu Liu & Zhuanlan Sun, 2022. "Cover papers of top journals are reliable source for emerging topics detection: a machine learning based prediction framework," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(8), pages 4315-4333, August.
    11. Xin Xu & Qianru Chen & Zhenhong Zhu, 2022. "Evolutionary Overview of Land Consolidation Based on Bibliometric Analysis in Web of Science from 2000 to 2020," IJERPH, MDPI, vol. 19(6), pages 1-19, March.
    12. Jianrong Yao & Xiangliang Guo & Lu Wang & Hui Jiang, 2022. "Understanding Green Consumption: A Literature Review Based on Factor Analysis and Bibliometric Method," Sustainability, MDPI, vol. 14(14), pages 1-13, July.
    13. Xu, Shuo & Hao, Liyuan & Yang, Guancan & Lu, Kun & An, Xin, 2021. "A topic models based framework for detecting and forecasting emerging technologies," Technological Forecasting and Social Change, Elsevier, vol. 162(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuo Xu & Junwan Liu & Dongsheng Zhai & Xin An & Zheng Wang & Hongshen Pang, 2018. "Overlapping thematic structures extraction with mixed-membership stochastic blockmodel," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(1), pages 61-84, October.
    2. Jochen Gläser & Wolfgang Glänzel & Andrea Scharnhorst, 2017. "Same data—different results? Towards a comparative approach to the identification of thematic structures in science," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 981-998, May.
    3. Paul Donner, 2021. "Validation of the Astro dataset clustering solutions with external data," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 1619-1645, February.
    4. Shenghui Wang & Rob Koopman, 2017. "Clustering articles based on semantic similarity," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 1017-1031, May.
    5. Rob Koopman & Shenghui Wang & Andrea Scharnhorst, 2017. "Contextualization of topics: browsing through the universe of bibliographic information," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 1119-1139, May.
    6. Theresa Velden & Kevin W. Boyack & Jochen Gläser & Rob Koopman & Andrea Scharnhorst & Shenghui Wang, 2017. "Comparison of topic extraction approaches and their results," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 1169-1221, May.
    7. Alexey Lyutov & Yilmaz Uygun & Marc-Thorsten Hütt, 2021. "Machine learning misclassification of academic publications reveals non-trivial interdependencies of scientific disciplines," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 1173-1186, February.
    8. Sjögårde, Peter & Ahlgren, Per, 2018. "Granularity of algorithmically constructed publication-level classifications of research publications: Identification of topics," Journal of Informetrics, Elsevier, vol. 12(1), pages 133-152.
    9. Yuan Zhou & Heng Lin & Yufei Liu & Wei Ding, 2019. "A novel method to identify emerging technologies using a semi-supervised topic clustering model: a case of 3D printing industry," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(1), pages 167-185, July.
    10. Jiang, Hanchen & Qiang, Maoshan & Lin, Peng, 2016. "A topic modeling based bibliometric exploration of hydropower research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 226-237.
    11. Frank Havemann & Jochen Gläser & Michael Heinz, 2017. "Memetic search for overlapping topics based on a local evaluation of link communities," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 1089-1118, May.
    12. Carlos Olmeda-Gómez & Carlos Romá-Mateo & Maria-Antonia Ovalle-Perandones, 2019. "Overview of trends in global epigenetic research (2009–2017)," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(3), pages 1545-1574, June.
    13. Xu, Haiyun & Winnink, Jos & Yue, Zenghui & Zhang, Huiling & Pang, Hongshen, 2021. "Multidimensional Scientometric indicators for the detection of emerging research topics," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    14. Maksym Polyakov & Morteza Chalak & Md. Sayed Iftekhar & Ram Pandit & Sorada Tapsuwan & Fan Zhang & Chunbo Ma, 2018. "Authorship, Collaboration, Topics, and Research Gaps in Environmental and Resource Economics 1991–2015," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(1), pages 217-239, September.
    15. Hsia-Ching Chang, 2016. "The Synergy of Scientometric Analysis and Knowledge Mapping with Topic Models: Modelling the Development Trajectories of Information Security and Cyber-Security Research," Journal of Information & Knowledge Management (JIKM), World Scientific Publishing Co. Pte. Ltd., vol. 15(04), pages 1-33, December.
    16. Marie Katsurai & Shunsuke Ono, 2019. "TrendNets: mapping emerging research trends from dynamic co-word networks via sparse representation," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(3), pages 1583-1598, December.
    17. Hao Wang & Sanhong Deng & Xinning Su, 2016. "A study on construction and analysis of discipline knowledge structure of Chinese LIS based on CSSCI," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(3), pages 1725-1759, December.
    18. Sabrina L. Woltmann & Lars Alkærsig, 2018. "Tracing university–industry knowledge transfer through a text mining approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(1), pages 449-472, October.
    19. Sung Kim & Derek Hansen & Richard Helps, 2018. "Computing research in the academy: insights from theses and dissertations," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(1), pages 135-158, January.
    20. Yun, Jinhyuk & Ahn, Sejung & Lee, June Young, 2020. "Return to basics: Clustering of scientific literature using structural information," Journal of Informetrics, Elsevier, vol. 14(4).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:113:y:2017:i:3:d:10.1007_s11192-017-2555-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.