IDEAS home Printed from https://ideas.repec.org/a/spr/qualqt/v49y2015i6p2633-2647.html
   My bibliography  Save this article

Artificial neural networks and fuzzy time series forecasting: an application to air quality

Author

Listed:
  • Nur Rahman
  • Muhammad Lee
  • Suhartono
  • Mohd Latif

Abstract

The arising air pollution has addressed much attention globally due to its detrimental effects on human health and environment. As an early warning system for air quality control and management, it is important to provide precise information about the future concentrations in pollutants. We present here a time series model in predicting the Air Pollution Index (API) from three different stations; industrial, residential, and sub-urban areas between 2000 and 2009. In this paper, the Box–Jenkins approach of seasonal autoregressive integrated moving average (ARIMA), artificial neural network (ANN), and three models of fuzzy time series (FTS) have been compared by using the mean absolute percentage error, mean absolute error, mean square error, and root mean square error. Although all the methods were used as operational tools, the ANN seemed more accurate in forecasting API. The results showed that FTS (i.e. Chen’s, Yu’s, and Cheng’s) performed inconsistent results since the conventional methods of ARIMA outperformed the performance of FTS. However, consistent results were achieved as the ANNs gave the smallest forecasting error compared to FTS and ARIMA. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Nur Rahman & Muhammad Lee & Suhartono & Mohd Latif, 2015. "Artificial neural networks and fuzzy time series forecasting: an application to air quality," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(6), pages 2633-2647, November.
  • Handle: RePEc:spr:qualqt:v:49:y:2015:i:6:p:2633-2647
    DOI: 10.1007/s11135-014-0132-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11135-014-0132-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11135-014-0132-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Guoqiang & Eddy Patuwo, B. & Y. Hu, Michael, 1998. "Forecasting with artificial neural networks:: The state of the art," International Journal of Forecasting, Elsevier, vol. 14(1), pages 35-62, March.
    2. Armstrong, J. Scott & Collopy, Fred, 1992. "Error measures for generalizing about forecasting methods: Empirical comparisons," International Journal of Forecasting, Elsevier, vol. 8(1), pages 69-80, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinyue Mo & Lei Zhang & Huan Li & Zongxi Qu, 2019. "A Novel Air Quality Early-Warning System Based on Artificial Intelligence," IJERPH, MDPI, vol. 16(19), pages 1-25, September.
    2. Yongli Zhang & Sanggyun Na, 2018. "Research on the Topological Properties of Air Quality Index Based on a Complex Network," Sustainability, MDPI, vol. 10(4), pages 1-20, April.
    3. Madeline Hui Li Lee & Yee Chee Ser & Ganeshsree Selvachandran & Pham Huy Thong & Le Cuong & Le Hoang Son & Nguyen Trung Tuan & Vassilis C. Gerogiannis, 2022. "A Comparative Study of Forecasting Electricity Consumption Using Machine Learning Models," Mathematics, MDPI, vol. 10(8), pages 1-23, April.
    4. Lu Bai & Jianzhou Wang & Xuejiao Ma & Haiyan Lu, 2018. "Air Pollution Forecasts: An Overview," IJERPH, MDPI, vol. 15(4), pages 1-44, April.
    5. Xiaotong Sun & Wei Xu & Hongxun Jiang & Qili Wang, 2021. "A deep multitask learning approach for air quality prediction," Annals of Operations Research, Springer, vol. 303(1), pages 51-79, August.
    6. Chen, Shuixia & Wang, Jian-qiang & Zhang, Hong-yu, 2019. "A hybrid PSO-SVM model based on clustering algorithm for short-term atmospheric pollutant concentration forecasting," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 41-54.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barrow, Devon K., 2016. "Forecasting intraday call arrivals using the seasonal moving average method," Journal of Business Research, Elsevier, vol. 69(12), pages 6088-6096.
    2. Bontempi, Gianluca & Ben Taieb, Souhaib, 2011. "Conditionally dependent strategies for multiple-step-ahead prediction in local learning," International Journal of Forecasting, Elsevier, vol. 27(3), pages 689-699, July.
    3. R Fildes & K Nikolopoulos & S F Crone & A A Syntetos, 2008. "Forecasting and operational research: a review," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(9), pages 1150-1172, September.
    4. Mirakyan, Atom & Meyer-Renschhausen, Martin & Koch, Andreas, 2017. "Composite forecasting approach, application for next-day electricity price forecasting," Energy Economics, Elsevier, vol. 66(C), pages 228-237.
    5. Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2020. "The M4 Competition: 100,000 time series and 61 forecasting methods," International Journal of Forecasting, Elsevier, vol. 36(1), pages 54-74.
    6. Brummelhuis, Raymond & Luo, Zhongmin, 2019. "Bank Net Interest Margin Forecasting and Capital Adequacy Stress Testing by Machine Learning Techniques," MPRA Paper 94779, University Library of Munich, Germany.
    7. Gary Madden & Joachim Tan, 2008. "Forecasting international bandwidth capacity using linear and ANN methods," Applied Economics, Taylor & Francis Journals, vol. 40(14), pages 1775-1787.
    8. Darbellay, Georges A. & Slama, Marek, 2000. "Forecasting the short-term demand for electricity: Do neural networks stand a better chance?," International Journal of Forecasting, Elsevier, vol. 16(1), pages 71-83.
    9. De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
    10. Jan G. De Gooijer & Rob J. Hyndman, 2005. "25 Years of IIF Time Series Forecasting: A Selective Review," Monash Econometrics and Business Statistics Working Papers 12/05, Monash University, Department of Econometrics and Business Statistics.
    11. Adeodato, Paulo J.L. & Arnaud, Adrian L. & Vasconcelos, Germano C. & Cunha, Rodrigo C.L.V. & Monteiro, Domingos S.M.P., 2011. "MLP ensembles improve long term prediction accuracy over single networks," International Journal of Forecasting, Elsevier, vol. 27(3), pages 661-671, July.
    12. Fildes, Robert, 2006. "The forecasting journals and their contribution to forecasting research: Citation analysis and expert opinion," International Journal of Forecasting, Elsevier, vol. 22(3), pages 415-432.
    13. Thomassey, Sebastien & Happiette, Michel & Castelain, Jean-Marie, 2005. "A global forecasting support system adapted to textile distribution," International Journal of Production Economics, Elsevier, vol. 96(1), pages 81-95, April.
    14. Balkin, Sandy, 2001. "On Forecasting Exchange Rates Using Neural Networks: P.H. Franses and P.V. Homelen, 1998, Applied Financial Economics, 8, 589-596," International Journal of Forecasting, Elsevier, vol. 17(1), pages 139-140.
    15. Barrow, Devon & Kourentzes, Nikolaos, 2018. "The impact of special days in call arrivals forecasting: A neural network approach to modelling special days," European Journal of Operational Research, Elsevier, vol. 264(3), pages 967-977.
    16. Lindh, Thomas & Malmberg, Bo, 2007. "Demographically based global income forecasts up to the year 2050," International Journal of Forecasting, Elsevier, vol. 23(4), pages 553-567.
    17. Daniel Buncic, 2012. "Understanding forecast failure of ESTAR models of real exchange rates," Empirical Economics, Springer, vol. 43(1), pages 399-426, August.
    18. Madden, Gary & Tan, Joachim, 2007. "Forecasting telecommunications data with linear models," Telecommunications Policy, Elsevier, vol. 31(1), pages 31-44, February.
    19. Apostolos Ampountolas & Titus Nyarko Nde & Paresh Date & Corina Constantinescu, 2021. "A Machine Learning Approach for Micro-Credit Scoring," Risks, MDPI, vol. 9(3), pages 1-20, March.
    20. Ebrahimpour, Reza & Nikoo, Hossein & Masoudnia, Saeed & Yousefi, Mohammad Reza & Ghaemi, Mohammad Sajjad, 2011. "Mixture of MLP-experts for trend forecasting of time series: A case study of the Tehran stock exchange," International Journal of Forecasting, Elsevier, vol. 27(3), pages 804-816, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:qualqt:v:49:y:2015:i:6:p:2633-2647. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.