Bi-factor and Second-Order Copula Models for Item Response Data
Author
Abstract
Suggested Citation
DOI: 10.1007/s11336-022-09894-2
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Albert Maydeu-Olivares, 2006. "Limited information estimation and testing of discretized multivariate normal structural models," Psychometrika, Springer;The Psychometric Society, vol. 71(1), pages 57-77, March.
- Yiu-Fai Yung & David Thissen & Lori McLeod, 1999. "On the relationship between the higher-order factor model and the hierarchical factor model," Psychometrika, Springer;The Psychometric Society, vol. 64(2), pages 113-128, June.
- Joe, Harry & Li, Haijun & Nikoloulopoulos, Aristidis K., 2010. "Tail dependence functions and vine copulas," Journal of Multivariate Analysis, Elsevier, vol. 101(1), pages 252-270, January.
- Joe, Harry, 2005. "Asymptotic efficiency of the two-stage estimation method for copula-based models," Journal of Multivariate Analysis, Elsevier, vol. 94(2), pages 401-419, June.
- Vuong, Quang H, 1989. "Likelihood Ratio Tests for Model Selection and Non-nested Hypotheses," Econometrica, Econometric Society, vol. 57(2), pages 307-333, March.
- Krupskii, Pavel & Joe, Harry, 2015. "Structured factor copula models: Theory, inference and computation," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 53-73.
- Dißmann, J. & Brechmann, E.C. & Czado, C. & Kurowicka, D., 2013. "Selecting and estimating regular vine copulae and application to financial returns," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 52-69.
- Nikoloulopoulos, Aristidis K. & Joe, Harry & Li, Haijun, 2012. "Vine copulas with asymmetric tail dependence and applications to financial return data," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3659-3673.
- Robert Gibbons & Donald Hedeker, 1992. "Full-information item bi-factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 57(3), pages 423-436, September.
- Albert Maydeu-Olivares & Harry Joe, 2006. "Limited Information Goodness-of-fit Testing in Multidimensional Contingency Tables," Psychometrika, Springer;The Psychometric Society, vol. 71(4), pages 713-732, December.
- Aristidis Nikoloulopoulos & Harry Joe, 2015. "Factor Copula Models for Item Response Data," Psychometrika, Springer;The Psychometric Society, vol. 80(1), pages 126-150, March.
- Frank Rijmen & Minjeong Jeon & Matthias von Davier & Sophia Rabe-Hesketh, 2014. "A Third-Order Item Response Theory Model for Modeling the Effects of Domains and Subdomains in Large-Scale Educational Assessment Surveys," Journal of Educational and Behavioral Statistics, , vol. 39(4), pages 235-256, August.
- John Schmid & John Leiman, 1957. "The development of hierarchical factor solutions," Psychometrika, Springer;The Psychometric Society, vol. 22(1), pages 53-61, March.
- Nikoloulopoulos, Aristidis K. & Karlis, Dimitris, 2008. "Copula model evaluation based on parametric bootstrap," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3342-3353, March.
- Krupskii, Pavel & Joe, Harry, 2013. "Factor copula models for multivariate data," Journal of Multivariate Analysis, Elsevier, vol. 120(C), pages 85-101.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Sayed H. Kadhem & Aristidis K. Nikoloulopoulos, 2023. "Factor Tree Copula Models for Item Response Data," Psychometrika, Springer;The Psychometric Society, vol. 88(3), pages 776-802, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sayed H. Kadhem & Aristidis K. Nikoloulopoulos, 2023. "Factor Tree Copula Models for Item Response Data," Psychometrika, Springer;The Psychometric Society, vol. 88(3), pages 776-802, September.
- Aristidis Nikoloulopoulos & Harry Joe, 2015. "Factor Copula Models for Item Response Data," Psychometrika, Springer;The Psychometric Society, vol. 80(1), pages 126-150, March.
- Aristidis K. Nikoloulopoulos, 2022. "An one‐factor copula mixed model for joint meta‐analysis of multiple diagnostic tests," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(3), pages 1398-1423, July.
- Aristidis K. Nikoloulopoulos & Peter G. Moffatt, 2019. "Coupling Couples With Copulas: Analysis Of Assortative Matching On Risk Attitude," Economic Inquiry, Western Economic Association International, vol. 57(1), pages 654-666, January.
- Krupskii, Pavel & Joe, Harry, 2015. "Structured factor copula models: Theory, inference and computation," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 53-73.
- Zhang, Xi & Li, Jian, 2018. "Credit and market risks measurement in carbon financing for Chinese banks," Energy Economics, Elsevier, vol. 76(C), pages 549-557.
- Nguyen, Hoang & Ausín, M. Concepción & Galeano, Pedro, 2020. "Variational inference for high dimensional structured factor copulas," Computational Statistics & Data Analysis, Elsevier, vol. 151(C).
- Brechmann Eike Christain & Czado Claudia, 2013. "Risk management with high-dimensional vine copulas: An analysis of the Euro Stoxx 50," Statistics & Risk Modeling, De Gruyter, vol. 30(4), pages 307-342, December.
- Benedikt Schamberger & Lutz F. Gruber & Claudia Czado, 2017. "Bayesian Inference for Latent Factor Copulas and Application to Financial Risk Forecasting," Econometrics, MDPI, vol. 5(2), pages 1-23, May.
- Jonas Moss & Steffen Grønneberg, 2023. "Partial Identification of Latent Correlations with Ordinal Data," Psychometrika, Springer;The Psychometric Society, vol. 88(1), pages 241-252, March.
- Koliai, Lyes, 2016. "Extreme risk modeling: An EVT–pair-copulas approach for financial stress tests," Journal of Banking & Finance, Elsevier, vol. 70(C), pages 1-22.
- Pavel Krupskii & Harry Joe, 2015. "Tail-weighted measures of dependence," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(3), pages 614-629, March.
- Dalla Valle, Luciana & De Giuli, Maria Elena & Tarantola, Claudia & Manelli, Claudio, 2016.
"Default probability estimation via pair copula constructions,"
European Journal of Operational Research, Elsevier, vol. 249(1), pages 298-311.
- Luciana Dalla Valle & Maria Elena De Giuli & Claudio Manelli & Claudia Tarantola, 2013. "Default Probability Estimation via Pair Copula Constructions," DEM Working Papers Series 048, University of Pavia, Department of Economics and Management.
- Luciana Dalla Valle & Maria Elena De Giuli & Claudia Tarantola & Claudio Manelli, 2014. "Default Probability Estimation via Pair Copula Constructions," Papers 1405.1309, arXiv.org, revised Aug 2015.
- Kreuzer, Alexander & Czado, Claudia, 2021. "Bayesian inference for a single factor copula stochastic volatility model using Hamiltonian Monte Carlo," Econometrics and Statistics, Elsevier, vol. 19(C), pages 130-150.
- Nikoloulopoulos, Aristidis K. & Joe, Harry & Li, Haijun, 2012. "Vine copulas with asymmetric tail dependence and applications to financial return data," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3659-3673.
- Zhou, Wei & Chen, Yan & Chen, Jin, 2022. "Risk spread in multiple energy markets: Extreme volatility spillover network analysis before and during the COVID-19 pandemic," Energy, Elsevier, vol. 256(C).
- Krupskii, Pavel & Joe, Harry, 2013. "Factor copula models for multivariate data," Journal of Multivariate Analysis, Elsevier, vol. 120(C), pages 85-101.
- Marbac, Matthieu & Sedki, Mohammed, 2017. "A family of block-wise one-factor distributions for modeling high-dimensional binary data," Computational Statistics & Data Analysis, Elsevier, vol. 114(C), pages 130-145.
- Karoline Bax & Ozge Sahin & Claudia Czado & Sandra Paterlini, 2021. "ESG, Risk, and (Tail) Dependence," Papers 2105.07248, arXiv.org, revised Nov 2021.
- Krupskii, Pavel & Joe, Harry, 2020. "Flexible copula models with dynamic dependence and application to financial data," Econometrics and Statistics, Elsevier, vol. 16(C), pages 148-167.
More about this item
Keywords
Bi-factor model; conditional independence; limited information; second-order model; tail dependence/asymmetry; truncated vines;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:88:y:2023:i:1:d:10.1007_s11336-022-09894-2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.