IDEAS home Printed from https://ideas.repec.org/a/spr/opsear/v62y2025i1d10.1007_s12597-024-00778-w.html
   My bibliography  Save this article

TOPSIS-based factor analytic model for the assessment of agricultural development in the state of Uttar Pradesh, India

Author

Listed:
  • Vishwajeet Singh

    (Manipal Academy of Higher Education (MAHE))

  • Madhulika Dube

    (Babasaheb Bhimrao Ambedkar University)

  • Manojkumar Nagasampige

    (Manipal Academy of Higher Education (MAHE))

  • Ritanshi Trivedi

    (Babasaheb Bhimrao Ambedkar University)

Abstract

This study delves into the nuanced evaluation of disparities in agricultural development in the leading agriculture-producing state, Uttar Pradesh in India. Unfortunately, owing to a multitude of reasons, the pace of development in all the districts of the state is different. Therefore, using the data on twenty-six agricultural indicators for the years 2019 and 2020, a unique and novel application that combines Factor Analytic Model, based on the theory of TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution), has been used to develop a composite index system for ranking the agricultural development in various districts in the state. The districts are then categorized into homogeneous groups of Highly Developed, Developed, Developing, and Less Developed in terms of their agricultural development status using Hierarchical and K-Mean Cluster Analysis. Key findings reveal significant prosperity in the Western region of Uttar Pradesh, while the semi-arid Bundelkhand region faces considerable challenges, emerging as the most underdeveloped zone. In order to help the policy makers and planners to achieve a uniform pace of agricultural development in the entire state, the work in the article is also devoted to determine model districts for the identified less developed districts.

Suggested Citation

  • Vishwajeet Singh & Madhulika Dube & Manojkumar Nagasampige & Ritanshi Trivedi, 2025. "TOPSIS-based factor analytic model for the assessment of agricultural development in the state of Uttar Pradesh, India," OPSEARCH, Springer;Operational Research Society of India, vol. 62(1), pages 37-54, March.
  • Handle: RePEc:spr:opsear:v:62:y:2025:i:1:d:10.1007_s12597-024-00778-w
    DOI: 10.1007/s12597-024-00778-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12597-024-00778-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12597-024-00778-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Opricovic, Serafim & Tzeng, Gwo-Hshiung, 2004. "Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS," European Journal of Operational Research, Elsevier, vol. 156(2), pages 445-455, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yongming Song & Jun Hu, 2017. "Vector similarity measures of hesitant fuzzy linguistic term sets and their applications," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-13, December.
    2. Yi Peng, 2015. "Regional earthquake vulnerability assessment using a combination of MCDM methods," Annals of Operations Research, Springer, vol. 234(1), pages 95-110, November.
    3. Hae-Yeol Kang & Seung Taek Chae & Eun-Sung Chung, 2023. "Quantifying Medium-Sized City Flood Vulnerability Due to Climate Change Using Multi-Criteria Decision-Making Techniques: Case of Republic of Korea," Sustainability, MDPI, vol. 15(22), pages 1-20, November.
    4. Zheng, Guozhong & Wang, Xiao, 2020. "The comprehensive evaluation of renewable energy system schemes in tourist resorts based on VIKOR method," Energy, Elsevier, vol. 193(C).
    5. Lin, Sheng-Hau & Zhao, Xiaofeng & Wu, Jiuxing & Liang, Fachao & Li, Jia-Hsuan & Lai, Ren-Ji & Hsieh, Jing-Chzi & Tzeng, Gwo-Hshiung, 2021. "An evaluation framework for developing green infrastructure by using a new hybrid multiple attribute decision-making model for promoting environmental sustainability," Socio-Economic Planning Sciences, Elsevier, vol. 75(C).
    6. Milad Zamanifar & Seyed Mohammad Seyedhoseyni, 2017. "Recovery planning model for roadways network after natural hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(2), pages 699-716, June.
    7. Pedro Ponce & Citlaly Pérez & Aminah Robinson Fayek & Arturo Molina, 2022. "Solar Energy Implementation in Manufacturing Industry Using Multi-Criteria Decision-Making Fuzzy TOPSIS and S4 Framework," Energies, MDPI, vol. 15(23), pages 1-19, November.
    8. Mohit Jain & Gunjan Soni & Deepak Verma & Rajendra Baraiya & Bharti Ramtiyal, 2023. "Selection of Technology Acceptance Model for Adoption of Industry 4.0 Technologies in Agri-Fresh Supply Chain," Sustainability, MDPI, vol. 15(6), pages 1-20, March.
    9. Chen, Lisa Y. & Wang, Tien-Chin, 2009. "Optimizing partners' choice in IS/IT outsourcing projects: The strategic decision of fuzzy VIKOR," International Journal of Production Economics, Elsevier, vol. 120(1), pages 233-242, July.
    10. Wenyao Niu & Yuan Rong & Liying Yu & Lu Huang, 2022. "A Novel Hybrid Group Decision Making Approach Based on EDAS and Regret Theory under a Fermatean Cubic Fuzzy Environment," Mathematics, MDPI, vol. 10(17), pages 1-30, August.
    11. Deb, Madhujit & Debbarma, Bishop & Majumder, Arindam & Banerjee, Rahul, 2016. "Performance –emission optimization of a diesel-hydrogen dual fuel operation: A NSGA II coupled TOPSIS MADM approach," Energy, Elsevier, vol. 117(P1), pages 281-290.
    12. Kuang-Hua Hu & Wei Jianguo & Gwo-Hshiung Tzeng, 2017. "Risk Factor Assessment Improvement for China’s Cloud Computing Auditing Using a New Hybrid MADM Model," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 16(03), pages 737-777, May.
    13. Wabukala, Benard M. & Bergland, Olvar & Mukisa, Nicholas & Adaramola, Muyiwa S. & Watundu, Susan & Orobia, Laura A. & Rudaheranwa, Nichodemus, 2024. "Electricity security in Uganda: Measurement and policy priorities," Utilities Policy, Elsevier, vol. 91(C).
    14. Fernando Rojas & Peter Wanke & Víctor Leiva & Mauricio Huerta & Carlos Martin-Barreiro, 2022. "Modeling Inventory Cost Savings and Supply Chain Success Factors: A Hybrid Robust Compromise Multi-Criteria Approach," Mathematics, MDPI, vol. 10(16), pages 1-18, August.
    15. Maghsoodi, Abtin Ijadi, 2023. "Cryptocurrency portfolio allocation using a novel hybrid and predictive big data decision support system," Omega, Elsevier, vol. 115(C).
    16. Hisham Alidrisi, 2021. "An Innovative Job Evaluation Approach Using the VIKOR Algorithm," JRFM, MDPI, vol. 14(6), pages 1-19, June.
    17. Büsing, Christina & Goetzmann, Kai-Simon & Matuschke, Jannik & Stiller, Sebastian, 2017. "Reference points and approximation algorithms in multicriteria discrete optimization," European Journal of Operational Research, Elsevier, vol. 260(3), pages 829-840.
    18. Abbas Keramati & Fatemeh Shapouri, 2016. "Multidimensional appraisal of customer relationship management: integrating balanced scorecard and multi criteria decision making approaches," Information Systems and e-Business Management, Springer, vol. 14(2), pages 217-251, May.
    19. Xiaodong Li & Haibo Kuang & Yan Hu, 2019. "Carbon Mitigation Strategies of Port Selection and Multimodal Transport Operations—A Case Study of Northeast China," Sustainability, MDPI, vol. 11(18), pages 1-17, September.
    20. Serafim Opricovic, 2009. "A Compromise Solution in Water Resources Planning," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(8), pages 1549-1561, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:opsear:v:62:y:2025:i:1:d:10.1007_s12597-024-00778-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.