IDEAS home Printed from https://ideas.repec.org/a/spr/opsear/v61y2024i4d10.1007_s12597-024-00752-6.html
   My bibliography  Save this article

Employing fuzzy DEA for Green-resilient supplier selection in an electronic industry of household appliances: a case study (Snowa)

Author

Listed:
  • Ali Saghafinia

    (Islamic Azad University)

  • Mansour Abedian

    (Islamic Azad University)

  • Maryam Hejazi

    (Islamic Azad University)

Abstract

The choice of green-resilient supplier selection as a complex multi-criterion decision-making problem that often involves some uncertain situations, has become a key issue in the development of electronics manufacturing. Decision-making models supporting the assessment of supply chain performance must consider comprehensive elements in the supply network, covering not only cost and technical capabilities, but also greenness and resilience aspects. Therefore, in order to fill the research gap, the present study proposed an integrated decision-making method based on the fuzzy set theory and data envelopment analysis (DEA) approach for supplier selection in a supply chain network to handle uncertainties caused by decision makers ‘subjective judgments which could reduce the supply chain costs and environmental impact and, moreover, extend the value of resilience. A case study was used to validate the applicability of the proposed model. The sensitivity analysis was employed to examine the impact of the proposed model. Furthermore, the proposed DEA-based model has been compared with a supplier selection Fuzzy inference system based method in the literature to show its validation. The results indicated the proposed fuzzy DEA method can provide a reliable and consensus decision-making framework for enterprises to select green-resilient suppliers in the electronic industry of household appliances.

Suggested Citation

  • Ali Saghafinia & Mansour Abedian & Maryam Hejazi, 2024. "Employing fuzzy DEA for Green-resilient supplier selection in an electronic industry of household appliances: a case study (Snowa)," OPSEARCH, Springer;Operational Research Society of India, vol. 61(4), pages 1825-1861, December.
  • Handle: RePEc:spr:opsear:v:61:y:2024:i:4:d:10.1007_s12597-024-00752-6
    DOI: 10.1007/s12597-024-00752-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12597-024-00752-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12597-024-00752-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kao, Chiang, 2009. "Efficiency decomposition in network data envelopment analysis: A relational model," European Journal of Operational Research, Elsevier, vol. 192(3), pages 949-962, February.
    2. Lei Xiong & Shuqi Zhong & Sen Liu & Xiao Zhang & Yanfeng Li, 2020. "An Approach for Resilient-Green Supplier Selection Based on WASPAS, BWM, and TOPSIS under Intuitionistic Fuzzy Sets," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-18, July.
    3. Geng, Zhiqiang & Zeng, Rongfu & Han, Yongming & Zhong, Yanhua & Fu, Hua, 2019. "Energy efficiency evaluation and energy saving based on DEA integrated affinity propagation clustering: Case study of complex petrochemical industries," Energy, Elsevier, vol. 179(C), pages 863-875.
    4. Li Xie & Chunlin Chen & Yihua Yu, 2019. "Dynamic Assessment of Environmental Efficiency in Chinese Industry: A Multiple DEA Model with a Gini Criterion Approach," Sustainability, MDPI, vol. 11(8), pages 1-22, April.
    5. Moon, Hana & Min, Daiki, 2017. "Assessing energy efficiency and the related policy implications for energy-intensive firms in Korea: DEA approach," Energy, Elsevier, vol. 133(C), pages 23-34.
    6. Ting-Kwei Wang & Qian Zhang & Heap-Yih Chong & Xiangyu Wang, 2017. "Integrated Supplier Selection Framework in a Resilient Construction Supply Chain: An Approach via Analytic Hierarchy Process (AHP) and Grey Relational Analysis (GRA)," Sustainability, MDPI, vol. 9(2), pages 1-26, February.
    7. Mansour Abedian & Atefeh Amindoust & Reza Maddahi & Javid Jouzdani, 2021. "A game theory approach to selecting marketing-mix strategies," Journal of Advances in Management Research, Emerald Group Publishing Limited, vol. 19(1), pages 139-158, May.
    8. Song, Malin & Fisher, Ron & Kwoh, Yusen, 2019. "Technological challenges of green innovation and sustainable resource management with large scale data," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 361-368.
    9. Xiaolu Zhang & Xiaoming Xing, 2017. "Probabilistic Linguistic VIKOR Method to Evaluate Green Supply Chain Initiatives," Sustainability, MDPI, vol. 9(7), pages 1-18, July.
    10. Syed Abdul Rehman Khan & Arshian Sharif & Hêriş Golpîra & Anil Kumar, 2019. "A green ideology in Asian emerging economies: From environmental policy and sustainable development," Sustainable Development, John Wiley & Sons, Ltd., vol. 27(6), pages 1063-1075, November.
    11. Aleksander Banasik & Jacqueline M. Bloemhof-Ruwaard & Argyris Kanellopoulos & G. D. H. Claassen & Jack G. A. J. Vorst, 2018. "Multi-criteria decision making approaches for green supply chains: a review," Flexible Services and Manufacturing Journal, Springer, vol. 30(3), pages 366-396, September.
    12. Torabi, S.A. & Baghersad, M. & Mansouri, S.A., 2015. "Resilient supplier selection and order allocation under operational and disruption risks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 79(C), pages 22-48.
    13. Seyedmohsen Hosseini & Abdullah Al Khaled, 2019. "A hybrid ensemble and AHP approach for resilient supplier selection," Journal of Intelligent Manufacturing, Springer, vol. 30(1), pages 207-228, January.
    14. Rohit Gupta & Indranil Biswas & Sushil Kumar, 2019. "Pricing decisions for three-echelon supply chain with advertising and quality effort-dependent fuzzy demand," International Journal of Production Research, Taylor & Francis Journals, vol. 57(9), pages 2715-2731, May.
    15. Takamura, Yoshiharu & Tone, Kaoru, 2003. "A comparative site evaluation study for relocating Japanese government agencies out of Tokyo," Socio-Economic Planning Sciences, Elsevier, vol. 37(2), pages 85-102, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antonio Zavala-Alcívar & María-José Verdecho & Juan-José Alfaro-Saiz, 2020. "A Conceptual Framework to Manage Resilience and Increase Sustainability in the Supply Chain," Sustainability, MDPI, vol. 12(16), pages 1-38, August.
    2. Ghanei, Shima & Contreras, Ivan & Cordeau, Jean-François, 2023. "A two-stage stochastic collaborative intertwined supply network design problem under multiple disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 170(C).
    3. Fengyi Lin & Sheng-Wei Lin & Wen-Min Lu, 2018. "Sustainability Assessment of Taiwan’s Semiconductor Industry: A New Hybrid Model Using Combined Analytic Hierarchy Process and Two-Stage Additive Network Data Envelopment Analysis," Sustainability, MDPI, vol. 10(11), pages 1-16, November.
    4. Amirmahdi Malek & Sadoullah Ebrahimnejad & Reza Tavakkoli-Moghaddam, 2017. "An Improved Hybrid Grey Relational Analysis Approach for Green Resilient Supply Chain Network Assessment," Sustainability, MDPI, vol. 9(8), pages 1-28, August.
    5. Shoufeng Ji & Pengyun Zhao & Tingting Ji, 2023. "A Hybrid Optimization Method for Sustainable and Flexible Design of Supply–Production–Distribution Network in the Physical Internet," Sustainability, MDPI, vol. 15(7), pages 1-34, April.
    6. Iman Kazemian & S. Ali Torabi & Christopher W. Zobel & Yuhong Li & Milad Baghersad, 2022. "A multi-attribute supply chain network resilience assessment framework based on SNA-inspired indicators," Operational Research, Springer, vol. 22(3), pages 1853-1883, July.
    7. Sanjeet Singh & Prabhat Ranjan, 2018. "Efficiency analysis of non-homogeneous parallel sub-unit systems for the performance measurement of higher education," Annals of Operations Research, Springer, vol. 269(1), pages 641-666, October.
    8. Sonia Irshad Mari & Muhammad Saad Memon & Muhammad Babar Ramzan & Sheheryar Mohsin Qureshi & Muhammad Waqas Iqbal, 2019. "Interactive Fuzzy Multi Criteria Decision Making Approach for Supplier Selection and Order Allocation in a Resilient Supply Chain," Mathematics, MDPI, vol. 7(2), pages 1-16, February.
    9. Madjid Tavana & Salman Nazari-Shirkouhi & Hamidreza Farzaneh Kholghabad, 2021. "An integrated quality and resilience engineering framework in healthcare with Z-number data envelopment analysis," Health Care Management Science, Springer, vol. 24(4), pages 768-785, December.
    10. Ahmed Mohammed & Morteza Yazdani & Amar Oukil & Ernesto D. R. Santibanez Gonzalez, 2021. "A Hybrid MCDM Approach towards Resilient Sourcing," Sustainability, MDPI, vol. 13(5), pages 1-30, March.
    11. Xu, Xiaoying, 2022. "The impact of natural resources on green growth: The role of green trade," Resources Policy, Elsevier, vol. 78(C).
    12. Kaur, Harpreet & Prakash Singh, Surya, 2021. "Multi-stage hybrid model for supplier selection and order allocation considering disruption risks and disruptive technologies," International Journal of Production Economics, Elsevier, vol. 231(C).
    13. Chen, Ya & Pan, Yongbin & Liu, Haoxiang & Wu, Huaqing & Deng, Guangwei, 2023. "Efficiency analysis of Chinese universities with shared inputs: An aggregated two-stage network DEA approach," Socio-Economic Planning Sciences, Elsevier, vol. 90(C).
    14. Fatih Yiğit & Şakir Esnaf, 2021. "A new Fuzzy C-Means and AHP-based three-phased approach for multiple criteria ABC inventory classification," Journal of Intelligent Manufacturing, Springer, vol. 32(6), pages 1517-1528, August.
    15. Zhao, Jun & Shahbaz, Muhammad & Dong, Kangyin, 2022. "How does energy poverty eradication promote green growth in China? The role of technological innovation," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    16. Faik Bilgili & Daniel Balsalobre-Lorente & Sevda Kuşkaya & Mohammed Alnour & Seyit Önderol & Mohammad Enamul Hoque, 2024. "Are research and development on energy efficiency and energy sources effective in the level of CO2 emissions? Fresh evidence from EU data," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(9), pages 24183-24219, September.
    17. Hongwei Liu & Ronglu Yang & Zhixiang Zhou & Dacheng Huang, 2020. "Regional Green Eco-Efficiency in China: Considering Energy Saving, Pollution Treatment, and External Environmental Heterogeneity," Sustainability, MDPI, vol. 12(17), pages 1-19, August.
    18. Chen, Ping-Chuan & Hung, Shiu-Wan, 2016. "An actor-network perspective on evaluating the R&D linking efficiency of innovation ecosystems," Technological Forecasting and Social Change, Elsevier, vol. 112(C), pages 303-312.
    19. Yongqi Feng & Haolin Zhang & Yung-ho Chiu & Tzu-Han Chang, 2021. "Innovation efficiency and the impact of the institutional quality: a cross-country analysis using the two-stage meta-frontier dynamic network DEA model," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 3091-3129, April.
    20. Yu-Chuan Chen & Yung-Ho Chiu & Tzu-Han Chang & Tai-Yu Lin, 2023. "Sustainable Development, Government Efficiency, and People’s Happiness," Journal of Happiness Studies, Springer, vol. 24(4), pages 1549-1578, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:opsear:v:61:y:2024:i:4:d:10.1007_s12597-024-00752-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.