IDEAS home Printed from https://ideas.repec.org/a/spr/opsear/v54y2017i4d10.1007_s12597-017-0307-8.html
   My bibliography  Save this article

Stochastic Fuzzy Multi-level Multi-objective Fractional Programming Problem: A FGP Approach

Author

Listed:
  • M. S. Osman

    (El Asher University)

  • O. E. Emam

    (Helwan University)

  • M. A. El Sayed

    (Benha University)

Abstract

In this paper, a fuzzy goal programming (FGP) approach is considered for solving stochastic fuzzy multi-level multi-objective fractional programming (ML-MOFP) problem. In the developed stochastic fuzzy ML-MOFP model the fractional objective function coefficients and scalars are represented by fuzzy parameters. Moreover, in the constraints, the right-hand sides are independent random variable with known distribution function while both the left-hand side coefficients and the tolerance measures are considered to be fuzzy parameters. Therefore, the chance-constrained approach with dominance possibility criteria and the α-cut approach are utilized to transform the stochastic fuzzy ML-MOFP problem to its equivalent deterministic-crisp problem. Then, the membership functions for the defined fuzzy goals are setup. Also, in the proposed FGP model, a linearization procedures for the membership goals of the objective functions is developed. Hence, the FGP approach is used to achieve the highest degree of each of the membership goals by minimizing the sum of the negative deviational variables. Finally, an algorithm to clarify the developed FGP approach, as well as Illustrative numerical example, are presented.

Suggested Citation

  • M. S. Osman & O. E. Emam & M. A. El Sayed, 2017. "Stochastic Fuzzy Multi-level Multi-objective Fractional Programming Problem: A FGP Approach," OPSEARCH, Springer;Operational Research Society of India, vol. 54(4), pages 816-840, December.
  • Handle: RePEc:spr:opsear:v:54:y:2017:i:4:d:10.1007_s12597-017-0307-8
    DOI: 10.1007/s12597-017-0307-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12597-017-0307-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12597-017-0307-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arora, S.R. & Gupta, Ritu, 2009. "Interactive fuzzy goal programming approach for bilevel programming problem," European Journal of Operational Research, Elsevier, vol. 194(2), pages 368-376, April.
    2. Lachhwani, Kailash, 2015. "Modified FGP approach for multi-level multi objective linear fractional programming problems," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 1038-1049.
    3. Ahlatcioglu, Mehmet & Tiryaki, Fatma, 2007. "Interactive fuzzy programming for decentralized two-level linear fractional programming (DTLLFP) problems," Omega, Elsevier, vol. 35(4), pages 432-450, August.
    4. Pramanik, Surapati & Roy, Tapan Kumar, 2007. "Fuzzy goal programming approach to multilevel programming problems," European Journal of Operational Research, Elsevier, vol. 176(2), pages 1151-1166, January.
    5. Romero, Carlos, 2001. "Extended lexicographic goal programming: a unifying approach," Omega, Elsevier, vol. 29(1), pages 63-71, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kailash Lachhwani, 2021. "Solving the general fully neutrosophic multi-level multiobjective linear programming problems," OPSEARCH, Springer;Operational Research Society of India, vol. 58(4), pages 1192-1216, December.
    2. Abolfazl Jafari Asl & Maghsud Solimanpur & Ravi Shankar, 2019. "Multi-objective multi-model assembly line balancing problem: a quantitative study in engine manufacturing industry," OPSEARCH, Springer;Operational Research Society of India, vol. 56(3), pages 603-627, September.
    3. Hawaf AbdAlhakim & O. E. Emam & A. A. Abd El-Mageed, 2019. "Architecting a fully fuzzy information model for multi-level quadratically constrained quadratic programming problem," OPSEARCH, Springer;Operational Research Society of India, vol. 56(2), pages 367-389, June.
    4. M. A. El Sayed & Ibrahim A. Baky & Pitam Singh, 2020. "A modified TOPSIS approach for solving stochastic fuzzy multi-level multi-objective fractional decision making problem," OPSEARCH, Springer;Operational Research Society of India, vol. 57(4), pages 1374-1403, December.
    5. Zhang, Fan & Cai, Yanpeng & Tan, Qian & Wang, Xuan, 2021. "Spatial water footprint optimization of crop planting: A fuzzy multiobjective optimal approach based on MOD16 evapotranspiration products," Agricultural Water Management, Elsevier, vol. 256(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. A. El Sayed & Ibrahim A. Baky & Pitam Singh, 2020. "A modified TOPSIS approach for solving stochastic fuzzy multi-level multi-objective fractional decision making problem," OPSEARCH, Springer;Operational Research Society of India, vol. 57(4), pages 1374-1403, December.
    2. Firoz Ahmad, 2022. "Interactive neutrosophic optimization technique for multiobjective programming problems: an application to pharmaceutical supply chain management," Annals of Operations Research, Springer, vol. 311(2), pages 551-585, April.
    3. Lachhwani, Kailash, 2015. "Modified FGP approach for multi-level multi objective linear fractional programming problems," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 1038-1049.
    4. Rizk M. Rizk-Allah & Mahmoud A. Abo-Sinna, 2021. "A comparative study of two optimization approaches for solving bi-level multi-objective linear fractional programming problem," OPSEARCH, Springer;Operational Research Society of India, vol. 58(2), pages 374-402, June.
    5. Hong Wang & Xiaodong Zhang, 2018. "A Decentralized Bi-Level Fuzzy Two-Stage Decision Model for Flood Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(5), pages 1615-1629, March.
    6. Dempe, S., 2011. "Comment to "interactive fuzzy goal programming approach for bilevel programming problem" by S.R. Arora and R. Gupta," European Journal of Operational Research, Elsevier, vol. 212(2), pages 429-431, July.
    7. Francisco Salas-Molina & Filippo Bistaffa & Juan A. Rodriguez-Aguilar, 2024. "A General Approach for Computing a Consensus in Group Decision Making That Integrates Multiple Ethical Principles," Papers 2401.07818, arXiv.org, revised Mar 2024.
    8. Kailash Lachhwani, 2021. "Solving the general fully neutrosophic multi-level multiobjective linear programming problems," OPSEARCH, Springer;Operational Research Society of India, vol. 58(4), pages 1192-1216, December.
    9. Wanke, Peter Fernandes & Chiappetta Jabbour, Charbel José & Moreira Antunes, Jorge Junio & Lopes de Sousa Jabbour, Ana Beatriz & Roubaud, David & Sobreiro, Vinicius Amorim & Santibanez Gonzalez‬, Erne, 2021. "An original information entropy-based quantitative evaluation model for low-carbon operations in an emerging market," International Journal of Production Economics, Elsevier, vol. 234(C).
    10. Mahmoud A. Abo-Sinna & Ibrahim A. Baky, 2010. "Fuzzy Goal Programming Procedure to Bilevel Multiobjective Linear Fractional Programming Problems," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2010, pages 1-15, March.
    11. Fleskens, Luuk & Graaff, Jan de, 2010. "Conserving natural resources in olive orchards on sloping land: Alternative goal programming approaches towards effective design of cross-compliance and agri-environmental measures," Agricultural Systems, Elsevier, vol. 103(8), pages 521-534, October.
    12. Scott, Carlton H. & Scott, J.E.Judy E., 2004. "On models for the operation of a class of electronic marketplaces," Omega, Elsevier, vol. 32(5), pages 373-383, October.
    13. J González-Pachón & C Romero, 2006. "An analytical framework for aggregating multiattribute utility functions," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(10), pages 1241-1247, October.
    14. Rohmer, S.U.K. & Gerdessen, J.C. & Claassen, G.D.H., 2019. "Sustainable supply chain design in the food system with dietary considerations: A multi-objective analysis," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1149-1164.
    15. Barbati, Maria & Greco, Salvatore & Kadziński, Miłosz & Słowiński, Roman, 2018. "Optimization of multiple satisfaction levels in portfolio decision analysis," Omega, Elsevier, vol. 78(C), pages 192-204.
    16. Xu, Jiuping & Song, Xiaoling & Wu, Yimin & Zeng, Ziqiang, 2015. "GIS-modelling based coal-fired power plant site identification and selection," Applied Energy, Elsevier, vol. 159(C), pages 520-539.
    17. Seyed Babak Ebrahimi & Ehsan Bagheri, 2022. "A multi-objective formulation for the closed-loop plastic supply chain under uncertainty," Operational Research, Springer, vol. 22(5), pages 4725-4768, November.
    18. Fernando García & Francisco Guijarro & Javier Oliver, 2021. "A Multicriteria Goal Programming Model for Ranking Universities," Mathematics, MDPI, vol. 9(5), pages 1-17, February.
    19. Jacinto González-Pachón & Carlos Romero, 2007. "Inferring consensus weights from pairwise comparison matrices without suitable properties," Annals of Operations Research, Springer, vol. 154(1), pages 123-132, October.
    20. Jones, Dylan & Jimenez, Mariano, 2013. "Incorporating additional meta-objectives into the extended lexicographic goal programming framework," European Journal of Operational Research, Elsevier, vol. 227(2), pages 343-349.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:opsear:v:54:y:2017:i:4:d:10.1007_s12597-017-0307-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.