IDEAS home Printed from https://ideas.repec.org/a/eee/oprepe/v13y2024ics2214716024000204.html
   My bibliography  Save this article

A generalized behavioral-based goal programming approach for decision-making under imprecision

Author

Listed:
  • Cherif, Mohamed Sadok

Abstract

The body of literature on goal programming (GP) approaches in modeling preferences and the satisfaction philosophy in multi-objective programming (MOP) decision-making processes is extensive. However, there has been little focus on how preferences change in relation to the decision-maker's (DM) behavior within this satisfaction philosophy, particularly in situations involving risk. To address this challenge, we propose introducing a behavior-type utility function into the GP model using the concept of a behavior function. This idea offers an innovative perspective for modeling DM's behavioral preferences in the imprecise GP approach by integrating a risk-aversion parameter specific to each objective. We then formulate a generalized behavioral-based GP approach for decision-making based on this new behavior-type utility function. To validate our proposed approach, we present an illustrative example of project selection in health service institutions, followed by a sensitivity analysis and comparisons with other approaches. The results demonstrate that DM's behavioral preferences significantly impact the decision-making process, and the proposed model provides more reasonable and convenient decisions for DMs with varying degrees of risk aversion.

Suggested Citation

  • Cherif, Mohamed Sadok, 2024. "A generalized behavioral-based goal programming approach for decision-making under imprecision," Operations Research Perspectives, Elsevier, vol. 13(C).
  • Handle: RePEc:eee:oprepe:v:13:y:2024:i:c:s2214716024000204
    DOI: 10.1016/j.orp.2024.100316
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2214716024000204
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.orp.2024.100316?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lu, Hao-Chun & Tsai, Shing Chih, 2024. "Generalized robust goal programming model," European Journal of Operational Research, Elsevier, vol. 319(2), pages 638-657.
    2. Flavell, RB, 1976. "A new goal programming formulation," Omega, Elsevier, vol. 4(6), pages 731-732.
    3. Mardani Najafabadi, Mostafa & Magazzino, Cosimo & Valente, Donatella & Mirzaei, Abbas & Petrosillo, Irene, 2023. "A new interval meta-goal programming for sustainable planning of agricultural water-land use nexus," Ecological Modelling, Elsevier, vol. 484(C).
    4. A. Charnes & W. W. Cooper & R. O. Ferguson, 1955. "Optimal Estimation of Executive Compensation by Linear Programming," Management Science, INFORMS, vol. 1(2), pages 138-151, January.
    5. Inuiguchi, Masahiro & Kume, Yasufumi, 1991. "Goal programming problems with interval coefficients and target intervals," European Journal of Operational Research, Elsevier, vol. 52(3), pages 345-360, June.
    6. Shyamal Sen, 2016. "A multiobjective interval goal programming method using penalty function," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 27(1/2), pages 232-251.
    7. Yaghoobi, M.A. & Tamiz, M., 2007. "A method for solving fuzzy goal programming problems based on MINMAX approach," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1580-1590, March.
    8. Arenas Parra, M. & Bilbao Terol, A. & Rodriguez Uria, M. V., 1999. "Solution of a possibilistic multiobjective linear programming problem," European Journal of Operational Research, Elsevier, vol. 119(2), pages 338-344, December.
    9. Jones, D. F. & Tamiz, M., 1995. "Expanding the flexibility of goal programming via preference modelling techniques," Omega, Elsevier, vol. 23(1), pages 41-48, February.
    10. Arora, S.R. & Gupta, Ritu, 2009. "Interactive fuzzy goal programming approach for bilevel programming problem," European Journal of Operational Research, Elsevier, vol. 194(2), pages 368-376, April.
    11. Dylan Jones & Mehrdad Tamiz, 2010. "Practical Goal Programming," International Series in Operations Research and Management Science, Springer, edition 1, number 978-1-4419-5771-9, June.
    12. Jones, D.F. & Treloar, R. & Ouelhadj, D. & Glampedakis, A. & Bartmeyer, P., 2024. "Incorporation of poverty principles into goal programming," Omega, Elsevier, vol. 127(C).
    13. Charnes, A. & Collomb, B., 1972. "Optimal economic stabilization policy: Linear goal-interval programming models," Socio-Economic Planning Sciences, Elsevier, vol. 6(4), pages 431-435, August.
    14. Kvanli, Alan H, 1980. "Financial planning using goal programming," Omega, Elsevier, vol. 8(2), pages 207-218.
    15. B Vitoriano & C Romero, 1999. "Extended interval goal programming," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(12), pages 1280-1283, December.
    16. Tamiz, Mehrdad & Jones, Dylan & Romero, Carlos, 1998. "Goal programming for decision making: An overview of the current state-of-the-art," European Journal of Operational Research, Elsevier, vol. 111(3), pages 569-581, December.
    17. Cherif, Mohamed Sadok & Chabchoub, Habib & Aouni, Belaid, 2008. "Quality control system design through the goal programming model and the satisfaction functions," European Journal of Operational Research, Elsevier, vol. 186(3), pages 1084-1098, May.
    18. James S. Dyer, 1972. "Interactive Goal Programming," Management Science, INFORMS, vol. 19(1), pages 62-70, September.
    19. Wichapa, Narong & Khokhajaikiat, Porntep, 2017. "Solving multi-objective facility location problem using the fuzzy analytical hierarchy process and goal programming: a case study on infectious waste disposal centers," Operations Research Perspectives, Elsevier, vol. 4(C), pages 39-48.
    20. Bruno Contini, 1968. "A Stochastic Approach to Goal Programming," Operations Research, INFORMS, vol. 16(3), pages 576-586, June.
    21. Romero, Carlos, 2001. "Extended lexicographic goal programming: a unifying approach," Omega, Elsevier, vol. 29(1), pages 63-71, February.
    22. Kim, Jong Soon & Whang, Kyu-Seung, 1998. "A tolerance approach to the fuzzy goal programming problems with unbalanced triangular membership function," European Journal of Operational Research, Elsevier, vol. 107(3), pages 614-624, June.
    23. Ching-Ter Chang, 2006. "Mixed binary interval goal programming," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(4), pages 469-473, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang, Ching-Ter, 2011. "Multi-choice goal programming with utility functions," European Journal of Operational Research, Elsevier, vol. 215(2), pages 439-445, December.
    2. Hamalainen, Raimo P. & Mantysaari, Juha, 2002. "Dynamic multi-objective heating optimization," European Journal of Operational Research, Elsevier, vol. 142(1), pages 1-15, October.
    3. Chang, Ching-Ter & Lin, Teng-Chiao, 2009. "Interval goal programming for S-shaped penalty function," European Journal of Operational Research, Elsevier, vol. 199(1), pages 9-20, November.
    4. Romero, Carlos, 2004. "A general structure of achievement function for a goal programming model," European Journal of Operational Research, Elsevier, vol. 153(3), pages 675-686, March.
    5. Tom Rihm & Philipp Baumann, 2018. "Staff assignment with lexicographically ordered acceptance levels," Journal of Scheduling, Springer, vol. 21(2), pages 167-189, April.
    6. J Aznar & F Guijarro, 2007. "Modelling aesthetic variables in the valuation of paintings: an interval goal programming approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(7), pages 957-963, July.
    7. Chang, Ching-Ter, 2007. "Multi-choice goal programming," Omega, Elsevier, vol. 35(4), pages 389-396, August.
    8. David Kik & Matthias Gerhard Wichmann & Thomas Stefan Spengler, 2022. "Decision support framework for the regional facility location and development planning problem," Journal of Business Economics, Springer, vol. 92(1), pages 115-157, January.
    9. Hocine, Amin & Zhuang, Zheng-Yun & Kouaissah, Noureddine & Li, Der-Chiang, 2020. "Weighted-additive fuzzy multi-choice goal programming (WA-FMCGP) for supporting renewable energy site selection decisions," European Journal of Operational Research, Elsevier, vol. 285(2), pages 642-654.
    10. Cinzia Colapinto & Raja Jayaraman & Simone Marsiglio, 2017. "Multi-criteria decision analysis with goal programming in engineering, management and social sciences: a state-of-the art review," Annals of Operations Research, Springer, vol. 251(1), pages 7-40, April.
    11. Yaghoobi, M.A. & Tamiz, M., 2007. "A method for solving fuzzy goal programming problems based on MINMAX approach," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1580-1590, March.
    12. Ching-Ter Chang, 2006. "Mixed binary interval goal programming," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(4), pages 469-473, April.
    13. Şeyda Gür & Tamer Eren, 2018. "Scheduling and Planning in Service Systems with Goal Programming: Literature Review," Mathematics, MDPI, vol. 6(11), pages 1-16, November.
    14. Tamiz, Mehrdad & Jones, Dylan & Romero, Carlos, 1998. "Goal programming for decision making: An overview of the current state-of-the-art," European Journal of Operational Research, Elsevier, vol. 111(3), pages 569-581, December.
    15. Hocine, Amine & Kouaissah, Noureddine & Bettahar, Samir & Benbouziane, Mohamed, 2018. "Optimizing renewable energy portfolios under uncertainty: A multi-segment fuzzy goal programming approach," Renewable Energy, Elsevier, vol. 129(PA), pages 540-552.
    16. Chang, Ching-Ter, 2007. "Binary fuzzy goal programming," European Journal of Operational Research, Elsevier, vol. 180(1), pages 29-37, July.
    17. Jones, Dylan, 2011. "A practical weight sensitivity algorithm for goal and multiple objective programming," European Journal of Operational Research, Elsevier, vol. 213(1), pages 238-245, August.
    18. Nurullah Umarusman, 2018. "Fuzzy Goal Programming Problem Based on Minmax Approach for Optimal System Design," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 6(1), pages 177-192, June.
    19. Hocine, Amin & Kouaissah, Noureddine & Lozza, Sergio Ortobelli & Aouam, Tarik, 2024. "Modelling De novo programming within Simon’s satisficing theory: Methods and application in designing an optimal offshore wind farm location system," European Journal of Operational Research, Elsevier, vol. 315(1), pages 289-306.
    20. M. Ortuño & B. Vitoriano, 2011. "A goal programming approach for farm planning with resources dimensionality," Annals of Operations Research, Springer, vol. 190(1), pages 181-199, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:oprepe:v:13:y:2024:i:c:s2214716024000204. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/operations-research-perspectives .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.