IDEAS home Printed from https://ideas.repec.org/a/spr/jbecon/v92y2022i1d10.1007_s11573-021-01050-z.html
   My bibliography  Save this article

Decision support framework for the regional facility location and development planning problem

Author

Listed:
  • David Kik

    (Technische Universität Braunschweig)

  • Matthias Gerhard Wichmann

    (Chemnitz University of Technology)

  • Thomas Stefan Spengler

    (Technische Universität Braunschweig)

Abstract

Location choice is a crucial planning task with major influence on a company’s future orientation and competitiveness. It is quite complex, since multiple location factors are usually of decision-relevance, incomparable, and sometimes conflictual. Further, ongoing urbanization is associated with locational dynamics posing major challenges for the regional location management of companies and municipalities. For example, respecting urban space as location factor, a scarcity growing over time leads to different assessment and requirements on a company’s behalf. For both companies and municipalities, there is a need for location development which implies an active change of location factor characteristics. Accordingly, considering locational dynamics is vital, as they may be decisive in the location decision-making. Although certain dynamics are considered within conventional Facility Location Problem (FLP) approaches, a systematic consideration of active location development is missing so far. Consequently, they may propagate long-term unfavorable location decisions, as major potentials associated with company-driven and municipal development measures are neglected. Therefore, this paper introduces a comprehensive decision support framework for the Regional Facility Location and Development planning Problem (RFLDP). It provides an operationalization of development measures, and thus anticipates dynamic adaptations to the environment. An established multi-criteria approach is extended to this new application. A complementary guideline ensures its meaningful applicability by practitioners. Based on a real-life case study, the decision support framework’s strength for practical application is demonstrated. Here, major advantages over conventional FLP approaches are highlighted. It is shown that the proposed methodology results in alternative location decisions which are structurally superior.

Suggested Citation

  • David Kik & Matthias Gerhard Wichmann & Thomas Stefan Spengler, 2022. "Decision support framework for the regional facility location and development planning problem," Journal of Business Economics, Springer, vol. 92(1), pages 115-157, January.
  • Handle: RePEc:spr:jbecon:v:92:y:2022:i:1:d:10.1007_s11573-021-01050-z
    DOI: 10.1007/s11573-021-01050-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11573-021-01050-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11573-021-01050-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kınay, Ömer Burak & Saldanha-da-Gama, Francisco & Kara, Bahar Y., 2019. "On multi-criteria chance-constrained capacitated single-source discrete facility location problems," Omega, Elsevier, vol. 83(C), pages 107-122.
    2. A. Charnes & W. W. Cooper & R. O. Ferguson, 1955. "Optimal Estimation of Executive Compensation by Linear Programming," Management Science, INFORMS, vol. 1(2), pages 138-151, January.
    3. JosÉ Figueira & Salvatore Greco & Matthias Ehrogott, 2005. "Multiple Criteria Decision Analysis: State of the Art Surveys," International Series in Operations Research and Management Science, Springer, number 978-0-387-23081-8, December.
    4. Pati, Rupesh Kumar & Vrat, Prem & Kumar, Pradeep, 2008. "A goal programming model for paper recycling system," Omega, Elsevier, vol. 36(3), pages 405-417, June.
    5. Stewart, TJ, 1992. "A critical survey on the status of multiple criteria decision making theory and practice," Omega, Elsevier, vol. 20(5-6), pages 569-586.
    6. Eva Coll-Martínez & Josep-Maria Arauzo-Carod, 2017. "Creative milieu and firm location: An empirical appraisal," Environment and Planning A, , vol. 49(7), pages 1613-1641, July.
    7. Stefan Nickel & Justo Puerto & Antonio M. Rodríguez-Chía, 2005. "MCDM Location Problems," International Series in Operations Research & Management Science, in: Multiple Criteria Decision Analysis: State of the Art Surveys, chapter 0, pages 761-787, Springer.
    8. Owen, Susan Hesse & Daskin, Mark S., 1998. "Strategic facility location: A review," European Journal of Operational Research, Elsevier, vol. 111(3), pages 423-447, December.
    9. Dylan Jones & Mehrdad Tamiz, 2010. "Practical Goal Programming," International Series in Operations Research and Management Science, Springer, edition 1, number 978-1-4419-5771-9, December.
    10. Current, John & Min, Hokey & Schilling, David, 1990. "Multiobjective analysis of facility location decisions," European Journal of Operational Research, Elsevier, vol. 49(3), pages 295-307, December.
    11. X Li & P Beullens & D Jones & M Tamiz, 2009. "An integrated queuing and multi-objective bed allocation model with application to a hospital in China," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(3), pages 330-338, March.
    12. Aouni, Belaid & Kettani, Ossama, 2001. "Goal programming model: A glorious history and a promising future," European Journal of Operational Research, Elsevier, vol. 133(2), pages 225-231, January.
    13. B Vitoriano & C Romero, 1999. "Extended interval goal programming," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(12), pages 1280-1283, December.
    14. Matthias Ehrgott, 2005. "Multicriteria Optimization," Springer Books, Springer, edition 0, number 978-3-540-27659-3, January.
    15. Jyrki Wallenius & James S. Dyer & Peter C. Fishburn & Ralph E. Steuer & Stanley Zionts & Kalyanmoy Deb, 2008. "Multiple Criteria Decision Making, Multiattribute Utility Theory: Recent Accomplishments and What Lies Ahead," Management Science, INFORMS, vol. 54(7), pages 1336-1349, July.
    16. Emir Hüseyin Özder & Evrencan Özcan & Tamer Eren, 2019. "Staff Task-Based Shift Scheduling Solution with an ANP and Goal Programming Method in a Natural Gas Combined Cycle Power Plant," Mathematics, MDPI, vol. 7(2), pages 1-26, February.
    17. Mirrazavi, S. Keyvan & Jones, Dylan F. & Tamiz, M., 2001. "A comparison of genetic and conventional methods for the solution of integer goal programmes," European Journal of Operational Research, Elsevier, vol. 132(3), pages 594-602, August.
    18. Badri, Masood A. & Mortagy, Amr K. & Alsayed, Colonel Ali, 1998. "A multi-objective model for locating fire stations," European Journal of Operational Research, Elsevier, vol. 110(2), pages 243-260, October.
    19. J Malczewski & W Ogryczak, 1996. "The Multiple Criteria Location Problem: 2. Preference-Based Techniques and Interactive Decision Support," Environment and Planning A, , vol. 28(1), pages 69-98, January.
    20. Melachrinoudis, Emanuel & Min, Hokey, 2000. "The dynamic relocation and phase-out of a hybrid, two-echelon plant/warehousing facility: A multiple objective approach," European Journal of Operational Research, Elsevier, vol. 123(1), pages 1-15, May.
    21. Jacek Malczewski, 2010. "Multiple Criteria Decision Analysis and Geographic Information Systems," International Series in Operations Research & Management Science, in: Matthias Ehrgott & José Rui Figueira & Salvatore Greco (ed.), Trends in Multiple Criteria Decision Analysis, chapter 0, pages 369-395, Springer.
    22. Abdelaziz, Fouad Ben, 2007. "Multiple objective programming and goal programming: New trends and applications," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1520-1522, March.
    23. Karatas, Mumtaz, 2017. "A multi-objective facility location problem in the presence of variable gradual coverage performance and cooperative cover," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1040-1051.
    24. Marie-Line Duboz & Nathalie Kroichvili & Julie Le Gallo, 2016. "Do Foreign Investors’ Location Determinants in Service Functions Differ According to Sectors? An Empirical Analysis of EU for 1997 to 2011," International Regional Science Review, , vol. 39(4), pages 417-456, October.
    25. Romero, Carlos, 2004. "A general structure of achievement function for a goal programming model," European Journal of Operational Research, Elsevier, vol. 153(3), pages 675-686, March.
    26. San Cristóbal, José Ramón, 2012. "A goal programming model for the optimal mix and location of renewable energy plants in the north of Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4461-4464.
    27. Tamiz, Mehrdad & Jones, Dylan & Romero, Carlos, 1998. "Goal programming for decision making: An overview of the current state-of-the-art," European Journal of Operational Research, Elsevier, vol. 111(3), pages 569-581, December.
    28. Romero, Carlos, 2001. "Extended lexicographic goal programming: a unifying approach," Omega, Elsevier, vol. 29(1), pages 63-71, February.
    29. J Malczewski & W Ogryczak, 1995. "The Multiple Criteria Location Problem: 1. A Generalized Network Model and the Set of Efficient Solutions," Environment and Planning A, , vol. 27(12), pages 1931-1960, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David Kik & Matthias G. Wichmann & Thomas S. Spengler, 2023. "Small- or Medium-Sized Enterprise Uses Operations Research to Select and Develop its Headquarters Location," Interfaces, INFORMS, vol. 53(4), pages 312-331, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang, Ching-Ter, 2011. "Multi-choice goal programming with utility functions," European Journal of Operational Research, Elsevier, vol. 215(2), pages 439-445, December.
    2. Şeyda Gür & Tamer Eren, 2018. "Scheduling and Planning in Service Systems with Goal Programming: Literature Review," Mathematics, MDPI, vol. 6(11), pages 1-16, November.
    3. Hocine, Amin & Zhuang, Zheng-Yun & Kouaissah, Noureddine & Li, Der-Chiang, 2020. "Weighted-additive fuzzy multi-choice goal programming (WA-FMCGP) for supporting renewable energy site selection decisions," European Journal of Operational Research, Elsevier, vol. 285(2), pages 642-654.
    4. Cinzia Colapinto & Raja Jayaraman & Simone Marsiglio, 2017. "Multi-criteria decision analysis with goal programming in engineering, management and social sciences: a state-of-the art review," Annals of Operations Research, Springer, vol. 251(1), pages 7-40, April.
    5. Zgajnar, Jaka & Kavcic, Stane, 2011. "Weighted Goal Programming and Penalty Functions: Whole-farm Planning Approach Under Risk," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 118033, European Association of Agricultural Economists.
    6. Chang, Ching-Ter, 2007. "Multi-choice goal programming," Omega, Elsevier, vol. 35(4), pages 389-396, August.
    7. Chang, Ching-Ter & Chung, Cheng-Kung & Sheu, Jiuh-Biing & Zhuang, Zheng-Yun & Chen, Huang-Mu, 2014. "The optimal dual-pricing policy of mall parking service," Transportation Research Part A: Policy and Practice, Elsevier, vol. 70(C), pages 223-243.
    8. Bilbao-Terol, Amelia & Arenas-Parra, Mar & Cañal-Fernández, Verónica, 2016. "A model based on Copula Theory for sustainable and social responsible investments," Revista de Contabilidad - Spanish Accounting Review, Elsevier, vol. 19(1), pages 55-76.
    9. Chang, Ching-Ter, 2007. "Binary fuzzy goal programming," European Journal of Operational Research, Elsevier, vol. 180(1), pages 29-37, July.
    10. Belaid Aouni & Sheila McGillis & Mustafa Elkasih Abdulkarim, 2017. "Goal programming model for management accounting and auditing: a new typology," Annals of Operations Research, Springer, vol. 251(1), pages 41-54, April.
    11. Chang, Ching-Ter & Lin, Teng-Chiao, 2009. "Interval goal programming for S-shaped penalty function," European Journal of Operational Research, Elsevier, vol. 199(1), pages 9-20, November.
    12. Hocine, Amine, 2018. "Meta goal programing approach for solving multi-criteria de Novo programing problemAuthor-Name: Zhuang, Zheng-Yun," European Journal of Operational Research, Elsevier, vol. 265(1), pages 228-238.
    13. Zheng-Yun Zhuang & Chi-Kit Ho & Paul Juinn Bing Tan & Jia-Ming Ying & Jin-Hua Chen, 2020. "The Optimal Setting of A/B Exam Papers without Item Pools: A Hybrid Approach of IRT and BGP," Mathematics, MDPI, vol. 8(8), pages 1-29, August.
    14. Amin Akbari & Ronald Pelot & H. A. Eiselt, 2018. "A modular capacitated multi-objective model for locating maritime search and rescue vessels," Annals of Operations Research, Springer, vol. 267(1), pages 3-28, August.
    15. Romero, Carlos, 2004. "A general structure of achievement function for a goal programming model," European Journal of Operational Research, Elsevier, vol. 153(3), pages 675-686, March.
    16. Francisco Guijarro, 2019. "A Multicriteria Model for the Assessment of Countries’ Environmental Performance," IJERPH, MDPI, vol. 16(16), pages 1-15, August.
    17. Jones, Dylan & Jimenez, Mariano, 2013. "Incorporating additional meta-objectives into the extended lexicographic goal programming framework," European Journal of Operational Research, Elsevier, vol. 227(2), pages 343-349.
    18. Jones, Dylan & Firouzy, Sina & Labib, Ashraf & Argyriou, Athanasios V., 2022. "Multiple criteria model for allocating new medical robotic devices to treatment centres," European Journal of Operational Research, Elsevier, vol. 297(2), pages 652-664.
    19. Benítez-Fernández, Amalia & Ruiz, Francisco, 2020. "A Meta-Goal Programming approach to cardinal preferences aggregation in multicriteria problems," Omega, Elsevier, vol. 94(C).
    20. M Larbani & B Aouni, 2011. "A new approach for generating efficient solutions within the goal programming model," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 175-182, January.

    More about this item

    Keywords

    Facility location problem; Systematic location development; Multi-criteria decision making; Empirically sound guideline; Case study;
    All these keywords.

    JEL classification:

    • L60 - Industrial Organization - - Industry Studies: Manufacturing - - - General
    • R30 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Real Estate Markets, Spatial Production Analysis, and Firm Location - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jbecon:v:92:y:2022:i:1:d:10.1007_s11573-021-01050-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.