IDEAS home Printed from https://ideas.repec.org/a/spr/operea/v24y2024i4d10.1007_s12351-024-00859-0.html
   My bibliography  Save this article

Analysing cost-effectiveness in dynamic network DEA: a directional distance function approach

Author

Listed:
  • Rajinder Kaur

    (Thapar Institute of Engineering and Technology)

  • Jolly Puri

    (Thapar Institute of Engineering and Technology)

Abstract

Dynamic data envelopment analysis (DEA) provides an efficiency estimation of the decision-making units (DMUs) across interconnected periods accounting for carryovers. Value-based cost efficiency evaluation is a well-known tool for estimating the cost-effectiveness of DMUs with heterogeneous input prices. This study introduces a value-based cost-efficiency approach within a directional DEA setup, addressing the significance of carryovers and varying input prices. It offers a network framework that incorporates inputs, outputs (both desirable and undesirable), and shared resources to dynamically measure the cost efficiency of DMUs at the system, period, and division levels. The proposed approach adheres to the principles of unit invariance provided links and carryovers are division-specific (not shared). It also satisfies the properties of translation invariance, and strict monotonicity with regard to input costs and allows for the selection of appropriate direction vectors to manage negative data in practical applications. To validate the efficacy of the proposed approach, it has been employed to assess the dynamic cost efficiency of domestic banks in India over a span of three consecutive periods. The results suggest that banks should concentrate on improving the cost efficiency in the process of deposit generation (division 1), followed by improvements in the income generation process (division 3) and then the lending and investment process (division 2). Moreover, the significance of the proposed approach is demonstrated through comparisons with an existing approach and a static approach.

Suggested Citation

  • Rajinder Kaur & Jolly Puri, 2024. "Analysing cost-effectiveness in dynamic network DEA: a directional distance function approach," Operational Research, Springer, vol. 24(4), pages 1-31, December.
  • Handle: RePEc:spr:operea:v:24:y:2024:i:4:d:10.1007_s12351-024-00859-0
    DOI: 10.1007/s12351-024-00859-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12351-024-00859-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12351-024-00859-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohsen Vaez-Ghasemi & Zohreh Moghaddas & Reza Farzipoor Saen, 2022. "Cost efficiency evaluation in sustainable supply chains with marginal surcharge values for harmful environmental factors: a case study in a food industry," Operational Research, Springer, vol. 22(5), pages 5897-5912, November.
    2. Per Andersen & Niels Christian Petersen, 1993. "A Procedure for Ranking Efficient Units in Data Envelopment Analysis," Management Science, INFORMS, vol. 39(10), pages 1261-1264, October.
    3. Lee, Hsuan-Shih & Chu, Ching-Wu & Zhu, Joe, 2011. "Super-efficiency DEA in the presence of infeasibility," European Journal of Operational Research, Elsevier, vol. 212(1), pages 141-147, July.
    4. Tone, Kaoru & Tsutsui, Miki, 2009. "Network DEA: A slacks-based measure approach," European Journal of Operational Research, Elsevier, vol. 197(1), pages 243-252, August.
    5. Jiro Nemoto & Mika Goto, 2003. "Measurement of Dynamic Efficiency in Production: An Application of Data Envelopment Analysis to Japanese Electric Utilities," Journal of Productivity Analysis, Springer, vol. 19(2), pages 191-210, April.
    6. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    7. K Tone, 2002. "A strange case of the cost and allocative efficiencies in DEA," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(11), pages 1225-1231, November.
    8. Bansal, Pooja & Kumar, Sunil & Mehra, Aparna & Gulati, Rachita, 2022. "Developing two dynamic Malmquist-Luenberger productivity indices: An illustrated application for assessing productivity performance of Indian banks," Omega, Elsevier, vol. 107(C).
    9. Tone, Kaoru & Tsutsui, Miki, 2010. "Dynamic DEA: A slacks-based measure approach," Omega, Elsevier, vol. 38(3-4), pages 145-156, June.
    10. Fukuyama, Hirofumi & Tsionas, Mike & Tan, Yong, 2023. "Dynamic network data envelopment analysis with a sequential structure and behavioural-causal analysis: Application to the Chinese banking industry," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1360-1373.
    11. Fang, Lei & Li, Hecheng, 2015. "Cost efficiency in data envelopment analysis under the law of one price," European Journal of Operational Research, Elsevier, vol. 240(2), pages 488-492.
    12. R. G. Chambers & Y. Chung & R. Färe, 1998. "Profit, Directional Distance Functions, and Nerlovian Efficiency," Journal of Optimization Theory and Applications, Springer, vol. 98(2), pages 351-364, August.
    13. Hirofumi Fukuyama & William L. Weber, 2017. "Japanese Bank Productivity, 2007–2012: A Dynamic Network Approach," Pacific Economic Review, Wiley Blackwell, vol. 22(4), pages 649-676, October.
    14. Timo Kuosmanen, 2005. "Weak Disposability in Nonparametric Production Analysis with Undesirable Outputs," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 87(4), pages 1077-1082.
    15. Sahoo, Biresh K. & Mehdiloozad, Mahmood & Tone, Kaoru, 2014. "Cost, revenue and profit efficiency measurement in DEA: A directional distance function approach," European Journal of Operational Research, Elsevier, vol. 237(3), pages 921-931.
    16. Kuosmanen, Timo & Post, Thierry, 2001. "Measuring economic efficiency with incomplete price information: With an application to European commercial banks," European Journal of Operational Research, Elsevier, vol. 134(1), pages 43-58, October.
    17. Camanho, A. S. & Dyson, R. G., 2005. "Cost efficiency measurement with price uncertainty: a DEA application to bank branch assessments," European Journal of Operational Research, Elsevier, vol. 161(2), pages 432-446, March.
    18. Ruiyue Lin & Zhiping Chen, 2017. "A directional distance based super-efficiency DEA model handling negative data," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(11), pages 1312-1322, November.
    19. Camanho, A.S. & Dyson, R.G., 2008. "A generalisation of the Farrell cost efficiency measure applicable to non-fully competitive settings," Omega, Elsevier, vol. 36(1), pages 147-162, February.
    20. Chambers, Robert G. & Chung, Yangho & Fare, Rolf, 1996. "Benefit and Distance Functions," Journal of Economic Theory, Elsevier, vol. 70(2), pages 407-419, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sahoo, Biresh K. & Mehdiloozad, Mahmood & Tone, Kaoru, 2014. "Cost, revenue and profit efficiency measurement in DEA: A directional distance function approach," European Journal of Operational Research, Elsevier, vol. 237(3), pages 921-931.
    2. Ayouba, Kassoum & Boussemart, Jean-Philippe & Lefer, Henri-Bertrand & Leleu, Hervé & Parvulescu, Raluca, 2019. "A measure of price advantage and its decomposition into output- and input-specific effects," European Journal of Operational Research, Elsevier, vol. 276(2), pages 688-698.
    3. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min, 2016. "Research fronts in data envelopment analysis," Omega, Elsevier, vol. 58(C), pages 33-45.
    4. Zhao, Yu & Morita, Hiroshi & Maruyama, Yukihiro, 2019. "The measurement of productive performance with consideration for allocative efficiency," Omega, Elsevier, vol. 89(C), pages 21-39.
    5. Camanho, Ana Santos & Silva, Maria Conceicao & Piran, Fabio Sartori & Lacerda, Daniel Pacheco, 2024. "A literature review of economic efficiency assessments using Data Envelopment Analysis," European Journal of Operational Research, Elsevier, vol. 315(1), pages 1-18.
    6. Hirofumi Fukuyama & William Weber, 2015. "Measuring Japanese bank performance: a dynamic network DEA approach," Journal of Productivity Analysis, Springer, vol. 44(3), pages 249-264, December.
    7. Khosro Soleimani-Chamkhorami & Saeid Ghobadi, 2021. "Cost-efficiency under inter-temporal dependence," Annals of Operations Research, Springer, vol. 302(1), pages 289-312, July.
    8. Lin, Ruiyue & Liu, Yue, 2019. "Super-efficiency based on the directional distance function in the presence of negative data," Omega, Elsevier, vol. 85(C), pages 26-34.
    9. Minh‐Anh Thi Nguyen & Ming‐Miin Yu, 2020. "Decomposing the operational efficiency of major cruise lines: A network data envelopment analysis approach in the presence of shared input and quasi‐fixed input," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 41(8), pages 1501-1516, December.
    10. Wanke, Peter & Tsionas, Mike G. & Chen, Zhongfei & Moreira Antunes, Jorge Junio, 2020. "Dynamic network DEA and SFA models for accounting and financial indicators with an analysis of super-efficiency in stochastic frontiers: An efficiency comparison in OECD banking," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 456-468.
    11. Xiaohong Liu & Jiasen Sun & Feng Yang & Jie Wu, 2020. "How ownership structure affects bank deposits and loan efficiencies: an empirical analysis of Chinese commercial banks," Annals of Operations Research, Springer, vol. 290(1), pages 983-1008, July.
    12. Kao, Chiang, 2014. "Network data envelopment analysis: A review," European Journal of Operational Research, Elsevier, vol. 239(1), pages 1-16.
    13. Fukuyama, Hirofumi & Matousek, Roman, 2018. "Nerlovian revenue inefficiency in a bank production context: Evidence from Shinkin banks," European Journal of Operational Research, Elsevier, vol. 271(1), pages 317-330.
    14. Hirofumi Fukuyama & William L. Weber, 2017. "Measuring bank performance with a dynamic network Luenberger indicator," Annals of Operations Research, Springer, vol. 250(1), pages 85-104, March.
    15. Akther, Syed & Fukuyama, Hirofumi & Weber, William L., 2013. "Estimating two-stage network Slacks-based inefficiency: An application to Bangladesh banking," Omega, Elsevier, vol. 41(1), pages 88-96.
    16. Wen, Yao & An, Qingxian & Gong, Yeming & Wu, Pengkun, 2024. "Structural rearrangement of the network system from an efficiency perspective: A silver lining of profit improvement," European Journal of Operational Research, Elsevier, vol. 316(3), pages 1001-1011.
    17. Hatami-Marbini, Adel & Arabmaldar, Aliasghar, 2021. "Robustness of Farrell cost efficiency measurement under data perturbations: Evidence from a US manufacturing application," European Journal of Operational Research, Elsevier, vol. 295(2), pages 604-620.
    18. Aparicio, Juan & Kapelko, Magdalena, 2019. "Accounting for slacks to measure dynamic inefficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 278(2), pages 463-471.
    19. Fukuyama, Hirofumi & Matousek, Roman & Tzeremes, Nickolaos G., 2022. "Bank production with nonperforming loans: A minimum distance directional slack inefficiency approach," Omega, Elsevier, vol. 113(C).
    20. Juo, Jia-Ching & Fu, Tsu-Tan & Yu, Ming-Miin & Lin, Yu-Hui, 2015. "Profit-oriented productivity change," Omega, Elsevier, vol. 57(PB), pages 176-187.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:operea:v:24:y:2024:i:4:d:10.1007_s12351-024-00859-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.