IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v87y2017i2d10.1007_s11069-017-2795-5.html
   My bibliography  Save this article

Dynamic relationship between functional stress and strain capacity of post-disaster infrastructure

Author

Listed:
  • Juyeong Choi

    (Purdue University)

  • Abhijeet Deshmukh

    (Purdue University)

  • Nader Naderpajouh

    (Royal Melbourne Institute of Technology (RMIT University))

  • Makarand Hastak

    (Purdue University
    Purdue University)

Abstract

To mitigate the impact of natural or man-made hazards on the services of an infrastructure facility, it is important to quantitatively assess its available capacity. For example, in a post-disaster scenario, critical infrastructure is likely to experience (i) excessive demand for the service of an infrastructure and/or (ii) compromised capacity because of damage to the infrastructure and the failure of infrastructure interdependencies. As the demand grows and nears the capacity limit of an infrastructure facility, a shortage of services required for the community’s recovery will occur. The development of mitigation strategies and an assessment of their effectiveness require a systematic approach. In this paper, a functional stress–strain principle for infrastructure facilities is proposed to quantitatively assess their serviceability in post-disaster scenarios. Functional stress in infrastructure management represents a service-related demand on an infrastructure facility, while strain indicates its coping capacity. The dynamic nature of infrastructure services will be considered depending on the relationship between demand and available capacity. The allowable range of functional stress is then defined, considering plastic and elastic patterns of responses of a facility during recovery to explore strain capacity variations. The proposed principle facilitates a systematic understanding of how infrastructure facilities can adapt themselves to growing stress and the maximum level of stress they can handle. The application of the proposed functional stress–strain principle is demonstrated through case studies of two infrastructure facilities in a post-earthquake scenario: a medical facility and a power facility.

Suggested Citation

  • Juyeong Choi & Abhijeet Deshmukh & Nader Naderpajouh & Makarand Hastak, 2017. "Dynamic relationship between functional stress and strain capacity of post-disaster infrastructure," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(2), pages 817-841, June.
  • Handle: RePEc:spr:nathaz:v:87:y:2017:i:2:d:10.1007_s11069-017-2795-5
    DOI: 10.1007/s11069-017-2795-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-017-2795-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-017-2795-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stephanie E. Chang & Timothy L. McDaniels & Joey Mikawoz & Krista Peterson, 2007. "Infrastructure failure interdependencies in extreme events: power outage consequences in the 1998 Ice Storm," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 41(2), pages 337-358, May.
    2. Wang, Shuliang & Hong, Liu & Chen, Xueguang, 2012. "Vulnerability analysis of interdependent infrastructure systems: A methodological framework," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(11), pages 3323-3335.
    3. Brady, Michael K. & Cronin, J. Jr. & Brand, Richard R., 2002. "Performance-only measurement of service quality: a replication and extension," Journal of Business Research, Elsevier, vol. 55(1), pages 17-31, January.
    4. Zhang, Pengcheng & Peeta, Srinivas, 2011. "A generalized modeling framework to analyze interdependencies among infrastructure systems," Transportation Research Part B: Methodological, Elsevier, vol. 45(3), pages 553-579, March.
    5. Nader Naderpajouh & Makarand Hastak, 2014. "Quantitative analysis of policies for governance of emergent dynamics in complex construction projects," Construction Management and Economics, Taylor & Francis Journals, vol. 32(12), pages 1222-1237, December.
    6. Juyeong Choi & Abhijeet Deshmukh & Makarand Hastak, 2016. "Increase in stress on infrastructure facilities due to natural disasters," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 20(sup1), pages 77-89, July.
    7. Ouyang, Min, 2014. "Review on modeling and simulation of interdependent critical infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 43-60.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nader Naderpajouh & David J. Yu & Daniel P. Aldrich & Igor Linkov & Juri Matinheikki, 2018. "Engineering meets institutions: an interdisciplinary approach to the management of resilience," Environment Systems and Decisions, Springer, vol. 38(3), pages 306-317, September.
    2. Ghasemi, Peiman & Khalili-Damghani, Kaveh, 2021. "A robust simulation-optimization approach for pre-disaster multi-period location–allocation–inventory planning," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 179(C), pages 69-95.
    3. Quan Mao & Nan Li, 2018. "Assessment of the impact of interdependencies on the resilience of networked critical infrastructure systems," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(1), pages 315-337, August.
    4. Juan Zhang & Mingyuan Zhang & Gang Li, 2021. "Multi-stage composition of urban resilience and the influence of pre-disaster urban functionality on urban resilience," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 447-473, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samiul Hasan & Greg Foliente, 2015. "Modeling infrastructure system interdependencies and socioeconomic impacts of failure in extreme events: emerging R&D challenges," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 2143-2168, September.
    2. Zhao, Chen & Li, Nan & Fang, Dongping, 2018. "Criticality assessment of urban interdependent lifeline systems using a biased PageRank algorithm and a multilayer weighted directed network model," International Journal of Critical Infrastructure Protection, Elsevier, vol. 22(C), pages 100-112.
    3. Chopra, Shauhrat S. & Khanna, Vikas, 2015. "Interconnectedness and interdependencies of critical infrastructures in the US economy: Implications for resilience," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 865-877.
    4. Monsalve, Mauricio & de la Llera, Juan Carlos, 2019. "Data-driven estimation of interdependencies and restoration of infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 167-180.
    5. Liu, Huan & Tatano, Hirokazu & Pflug, Georg & Hochrainer-Stigler, Stefan, 2021. "Post-disaster recovery in industrial sectors: A Markov process analysis of multiple lifeline disruptions," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    6. Dubaniowski, Mateusz Iwo & Heinimann, Hans Rudolf, 2021. "Framework for modeling interdependencies between households, businesses, and infrastructure system, and their response to disruptions—application," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    7. Lu, Qing-Chang & Xu, Peng-Cheng & Zhao, Xiangmo & Zhang, Lei & Li, Xiaoling & Cui, Xin, 2022. "Measuring network interdependency between dependent networks: A supply-demand-based approach," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    8. Liu, Xiaoxue & Zhang, Jiexin & Zhu, Peidong, 2017. "Modeling cyber-physical attacks based on probabilistic colored Petri nets and mixed-strategy game theory," International Journal of Critical Infrastructure Protection, Elsevier, vol. 16(C), pages 13-25.
    9. Zio, Enrico, 2016. "Challenges in the vulnerability and risk analysis of critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 137-150.
    10. Brunner, L.G. & Peer, R.A.M. & Zorn, C. & Paulik, R. & Logan, T.M., 2024. "Understanding cascading risks through real-world interdependent urban infrastructure," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    11. Mühlhofer, Evelyn & Koks, Elco E. & Kropf, Chahan M. & Sansavini, Giovanni & Bresch, David N., 2023. "A generalized natural hazard risk modelling framework for infrastructure failure cascades," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    12. Arvidsson, Björn & Johansson, Jonas & Guldåker, Nicklas, 2021. "Critical infrastructure, geographical information science and risk governance: A systematic cross-field review," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    13. Zhang, Chuanchuan & Zhao, Jianmei, 2017. "Internet Usage and Rural Entrepreneurship in China," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258521, Agricultural and Applied Economics Association.
    14. Hassan Al-Zarooni & Hamdi Bashir, 2020. "An integrated ISM fuzzy MICMAC approach for modeling and analyzing electrical power system network interdependencies," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(6), pages 1204-1226, December.
    15. Rita Der Sarkissian & Chadi Abdallah & Jean-Marc Zaninetti & Sara Najem, 2020. "Modelling intra-dependencies to assess road network resilience to natural hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(1), pages 121-137, August.
    16. Ouyang, Min & Pan, ZheZhe & Hong, Liu & He, Yue, 2015. "Vulnerability analysis of complementary transportation systems with applications to railway and airline systems in China," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 248-257.
    17. Harašta, Jakub, 2018. "Legally critical: Defining critical infrastructure in an interconnected world," International Journal of Critical Infrastructure Protection, Elsevier, vol. 21(C), pages 47-56.
    18. Liu, Wei & Song, Zhaoyang, 2020. "Review of studies on the resilience of urban critical infrastructure networks," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    19. Sharma, Neetesh & Gardoni, Paolo, 2022. "Mathematical modeling of interdependent infrastructure: An object-oriented approach for generalized network-system analysis," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    20. Chao Fang & Piao Dong & Yi-Ping Fang & Enrico Zio, 2020. "Vulnerability analysis of critical infrastructure under disruptions: An application to China Railway High-speed," Journal of Risk and Reliability, , vol. 234(2), pages 235-245, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:87:y:2017:i:2:d:10.1007_s11069-017-2795-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.