IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v76y2015i3p1711-1725.html
   My bibliography  Save this article

Development of an intelligent disaster information-integrated platform for radiation monitoring

Author

Listed:
  • Tzu-Husan Lin
  • Der-Cherng Liaw

Abstract

Traditional infrastructures are subjected to disasters that carry the risk of major loss of human life if not responded to properly. Damage and injury can and should be minimized through the provision of adequate situational awareness and decision-making support, and for this reason, the internet of things (IOT) is potentially very useful for managing crisis situations via providing sound disaster management and emergency-response information. This study has developed an IOT-based intelligent disaster information-integrated platform (IDIIP) for disaster monitoring, disaster information management, and emergency-response coordination. A radiation-monitoring scenario has been selected to prove the concept of the IDIIP. However, when numerous sensors and related devices are deployed, great difficulties arise in maintaining, updating, and configuring them. To address these issues, we developed a novel IOT-based data storage and exchange framework in IDIIP. Thanks to this framework, IOT devices can be upgraded effortlessly even if site conditions or users’ requirements change. Our framework also makes it much easier to upgrade sensors without rewriting the sensor drivers. An experiment for radiation measurement was conducted to validate our prototype radiation-sensing node and IOT center node. This and an operational radiation-monitoring scenario for this platform are described in the article. All results indicate that this platform would be beneficial for radiation monitoring and disaster information dissemination to the public. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Tzu-Husan Lin & Der-Cherng Liaw, 2015. "Development of an intelligent disaster information-integrated platform for radiation monitoring," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(3), pages 1711-1725, April.
  • Handle: RePEc:spr:nathaz:v:76:y:2015:i:3:p:1711-1725
    DOI: 10.1007/s11069-014-1565-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-014-1565-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-014-1565-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Qiang & Chen, Xi & Yi-chong, Xu, 2013. "Accident like the Fukushima unlikely in a country with effective nuclear regulation: Literature review and proposed guidelines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 126-146.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenjuan Sun & Paolo Bocchini & Brian D. Davison, 2020. "Applications of artificial intelligence for disaster management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 2631-2689, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lam, J. & Cheung, L. & Han, Y. & Wang, S., 2018. "China’s Response to Nuclear Safety Post-Fukushima: Genuine or Rhetoric?," Cambridge Working Papers in Economics 1866, Faculty of Economics, University of Cambridge.
    2. Goebel, Jan & Krekel, Christian & Tiefenbach, Tim & Ziebarth, Nicolas R., 2013. "Natural Disaster, Policy Action, and Mental Well-Being: The Case of Fukushima," IZA Discussion Papers 7691, Institute of Labor Economics (IZA).
    3. Wang, Qiang & Jha, Awadhesh N. & Chen, Xi & Dong, Jie-fang & Wang, Xing-min, 2015. "The future of nuclear safety: vital role of geoscientists?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 239-243.
    4. Wang, Qiang & Li, Rongrong & He, Gang, 2018. "Research status of nuclear power: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 90-96.
    5. Contu, Davide & Strazzera, Elisabetta, 2022. "Testing for saliency-led choice behavior in discrete choice modeling: An application in the context of preferences towards nuclear energy in Italy," Journal of choice modelling, Elsevier, vol. 44(C).
    6. Contu, Davide & Strazzera, Elisabetta & Mourato, Susana, 2016. "Modeling individual preferences for energy sources: The case of IV generation nuclear energy in Italy," Ecological Economics, Elsevier, vol. 127(C), pages 37-58.
    7. Xue-ting Jiang & Min Su & Rongrong Li, 2018. "Investigating the Factors Influencing the Decoupling of Transport-Related Carbon Emissions from Turnover Volume in China," Sustainability, MDPI, vol. 10(9), pages 1-17, August.
    8. Liu, Dehai & Xiao, Xingzhi & Li, Hongyi & Wang, Weiguo, 2015. "Historical evolution and benefit–cost explanation of periodical fluctuation in coal mine safety supervision: An evolutionary game analysis framework," European Journal of Operational Research, Elsevier, vol. 243(3), pages 974-984.
    9. Hong, Sanghyun & Bradshaw, Corey J.A. & Brook, Barry W., 2015. "Global zero-carbon energy pathways using viable mixes of nuclear and renewables," Applied Energy, Elsevier, vol. 143(C), pages 451-459.
    10. Rui Jiang & Rongrong Li, 2017. "Decomposition and Decoupling Analysis of Life-Cycle Carbon Emission in China’s Building Sector," Sustainability, MDPI, vol. 9(5), pages 1-18, May.
    11. Jan Goebel & Christian Krekel & Tim Tiefenbach & Nicholas R. Ziebarth, 2014. "Natural Disaster, Environmental Concerns, Well-Being and Policy Action," CINCH Working Paper Series 1405, Universitaet Duisburg-Essen, Competent in Competition and Health.
    12. Shuyu Li & Rongrong Li, 2019. "Evaluating Energy Sustainability Using the Pressure-State-Response and Improved Matter-Element Extension Models: Case Study of China," Sustainability, MDPI, vol. 11(1), pages 1-20, January.
    13. Kiran Kaur & Kwan Hoong Ng & Ray Kemp & Yin Yee Ong & Zaharah Ramly & Ai Peng Koh, 2019. "Knowledge generation in the wake of the Fukushima Daiichi nuclear power plant disaster," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(1), pages 149-169, April.
    14. Lam, Jacqueline C.K. & Cheung, Lawrence Y.L. & Han, Yang & Wang, Shanshan, 2022. "China's response to nuclear safety pre- and post-Fukushima: An interdisciplinary analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    15. Ridoan Karim & Firdaus Muhammad-Sukki & Mohammad Ershadul Karim & Abu Bakar Munir & Imtiaz Mohammad Sifat & Siti Hawa Abu-Bakar & Nurul Aini Bani & Mohd Nabil Muhtazaruddin, 2018. "Legal and Regulatory Development of Nuclear Energy in Bangladesh," Energies, MDPI, vol. 11(10), pages 1-18, October.
    16. Sung-Wan Kim & Da-Woon Yun & Bub-Gyu Jeon & Dae-Gi Hahm & Min-Kyu Kim, 2021. "Evaluation of the Limit State of a Six-Inch Carbon Steel Pipe Elbow in Base-Isolated Nuclear Power Plants," Energies, MDPI, vol. 14(24), pages 1-15, December.
    17. Jan Goebel & Christian Krekel & Tim Tiefenbach & Nicolas Ziebarth, 2015. "How natural disasters can affect environmental concerns, risk aversion, and even politics: evidence from Fukushima and three European countries," Journal of Population Economics, Springer;European Society for Population Economics, vol. 28(4), pages 1137-1180, October.
    18. Yuan, Xueliang & Wang, Xujiang & Zuo, Jian, 2013. "Renewable energy in buildings in China—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 1-8.
    19. Wang, Qiang & Chen, Xi & Jha, Awadhesh N. & Rogers, Howard, 2014. "Natural gas from shale formation – The evolution, evidences and challenges of shale gas revolution in United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 1-28.
    20. Qiang Wang & Rongrong Li & Rui Jiang, 2016. "Decoupling and Decomposition Analysis of Carbon Emissions from Industry: A Case Study from China," Sustainability, MDPI, vol. 8(10), pages 1-17, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:76:y:2015:i:3:p:1711-1725. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.