IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v121y2025i3d10.1007_s11069-024-06945-y.html
   My bibliography  Save this article

Modeling flood hazard impacts using GIS-based HEC-RAS technique towards climate risk in Şanlıurfa, Türkiye

Author

Listed:
  • Demet Saatci Guven

    (Harran University)

  • Kasim Yenigun

    (Kastamonu University)

  • Oznur Isinkaralar

    (Kastamonu University)

  • Kaan Isinkaralar

    (Kastamonu University)

Abstract

Climate change triggering extreme weather events and the fact that settlements are at risk have made flood disaster analysis a more critical issue. The economic, social, and environmental risk areas of Karakoyun, Sırrın, and Cavsak streams located in Şanlıurfa city center were determined using flood risk analysis. Thus, it aims to determine low, medium, high, and very high probability flood areas in the area, to collect the necessary data for establishing early warning systems and precaution packages, and to create an infrastructure for similar studies. While performing the risk analysis, we used Q5, Q10, Q25, Q50, Q100, Q500, and Q1000 flood recurrence flows of the mentioned streams. Many criteria were considered, including stream routes, natural water retention capacities, land topography, and general hydrological and geological features. In the light of the data provided, digital elevation models of the streams were created in the ArcGIS 10.3 program, all information was transferred to the hydraulic modeling HEC-RAS 5.07 software, and risky areas were determined by performing a 1D flood analysis. At Q2 flow rate, Karakoyun has 7.09, Cavsak 2.67, Sırrın 6.603 m3 s− 1, and at Q1000 flow rate, Karakoyun has 167.550, Cavsak 90.77, Sırrın 151.298 m3 s− 1 hydrograph peak values. As a result of the analysis, it was appointed that there was a flood risk in many parts of the stream sections. The flooding phenomenon has happened to be one of the most devastating floods for economic and environmental damages that occurred in Şanlıurfa City in 2023. People lost their lives, and many were injured during flooding; also, the urban economy affected nearly $15 million in the region. The risk of residences, shopping malls, and commercial areas in the city is revealed spatially.

Suggested Citation

  • Demet Saatci Guven & Kasim Yenigun & Oznur Isinkaralar & Kaan Isinkaralar, 2025. "Modeling flood hazard impacts using GIS-based HEC-RAS technique towards climate risk in Şanlıurfa, Türkiye," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(3), pages 3657-3675, February.
  • Handle: RePEc:spr:nathaz:v:121:y:2025:i:3:d:10.1007_s11069-024-06945-y
    DOI: 10.1007/s11069-024-06945-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-024-06945-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-024-06945-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Vafadarnikjoo, Amin & Chalvatzis, Konstantinos & Botelho, Tiago & Bamford, David, 2023. "A stratified decision-making model for long-term planning: Application in flood risk management in Scotland," Omega, Elsevier, vol. 116(C).
    2. Zekâi Şen, 2020. "Water Structures and Climate Change Impact: a Review," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(13), pages 4197-4216, October.
    3. Andor, Mark A. & Osberghaus, Daniel & Simora, Michael, 2020. "Natural Disasters and Governmental Aid: Is there a Charity Hazard?," Ecological Economics, Elsevier, vol. 169(C).
    4. W. J. Wouter Botzen & Howard Kunreuther & Jeffrey Czajkowski & Hans de Moel, 2019. "Adoption of Individual Flood Damage Mitigation Measures in New York City: An Extension of Protection Motivation Theory," Risk Analysis, John Wiley & Sons, vol. 39(10), pages 2143-2159, October.
    5. Kazem Shahverdi & Hossein Talebmorad, 2023. "Automating HEC-RAS and Linking with Particle Swarm Optimizer to Calibrate Manning’s Roughness Coefficient," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(2), pages 975-993, January.
    6. Wiwandari Handayani & Uchendu Eugene Chigbu & Iwan Rudiarto & Intan Hapsari Surya Putri, 2020. "Urbanization and Increasing Flood Risk in the Northern Coast of Central Java—Indonesia: An Assessment towards Better Land Use Policy and Flood Management," Land, MDPI, vol. 9(10), pages 1-22, September.
    7. Sarah Pralle, 2019. "Drawing lines: FEMA and the politics of mapping flood zones," Climatic Change, Springer, vol. 152(2), pages 227-237, January.
    8. Sajjad M. Vatanchi & Mahmoud F. Maghrebi, 2019. "Uncertainty in Rating-Curves Due to Manning Roughness Coefficient," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(15), pages 5153-5167, December.
    9. Romulus Costache, 2019. "Flood Susceptibility Assessment by Using Bivariate Statistics and Machine Learning Models - A Useful Tool for Flood Risk Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(9), pages 3239-3256, July.
    10. Rob Lamb & Paige Garside & Raghav Pant & Jim W. Hall, 2019. "A Probabilistic Model of the Economic Risk to Britain's Railway Network from Bridge Scour During Floods," Risk Analysis, John Wiley & Sons, vol. 39(11), pages 2457-2478, November.
    11. Brenden Jongman, 2018. "Effective adaptation to rising flood risk," Nature Communications, Nature, vol. 9(1), pages 1-3, December.
    12. Ralf Nordbeck & Reinhard Steurer & Lukas Löschner, 2019. "The future orientation of Austria’s flood policies: from flood control to anticipatory flood risk management," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 62(11), pages 1864-1885, September.
    13. Jenna Tyler & Abdul-Akeem Sadiq & Douglas S. Noonan, 2019. "A review of the community flood risk management literature in the USA: lessons for improving community resilience to floods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(3), pages 1223-1248, April.
    14. Bikram Manandhar & Shenghui Cui & Lihong Wang & Sabita Shrestha, 2023. "Urban Flood Hazard Assessment and Management Practices in South Asia: A Review," Land, MDPI, vol. 12(3), pages 1-29, March.
    15. Hadi Norouzi & Jalal Bazargan, 2022. "Calculation of Water Depth during Flood in Rivers using Linear Muskingum Method and Particle Swarm Optimization (PSO) Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(11), pages 4343-4361, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Craig E. Landry & Dylan Turner & Daniel Petrolia, 2021. "Flood Insurance Market Penetration and Expectations of Disaster Assistance," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 79(2), pages 357-386, June.
    2. Kazem Shahverdi & Hossein Talebmorad, 2023. "Automating HEC-RAS and Linking with Particle Swarm Optimizer to Calibrate Manning’s Roughness Coefficient," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(2), pages 975-993, January.
    3. Welsch, David M. & Winden, Matthew W. & Zimmer, David M., 2022. "The effect of flood mitigation spending on flood damage: Accounting for dynamic feedback," Ecological Economics, Elsevier, vol. 192(C).
    4. Chaowei Xu & Hao Fu & Jiashuai Yang & Lingyue Wang, 2022. "Assessment of the Relationship between Land Use and Flood Risk Based on a Coupled Hydrological–Hydraulic Model: A Case Study of Zhaojue River Basin in Southwestern China," Land, MDPI, vol. 11(8), pages 1-24, July.
    5. Peter John Robinson & W. J. Wouter Botzen, 2022. "Setting descriptive norm nudges to promote demand for insurance against increasing climate change risk," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 47(1), pages 27-49, January.
    6. Peter John Robinson & W. J. Wouter Botzen & Fujin Zhou, 2021. "An experimental study of charity hazard: The effect of risky and ambiguous government compensation on flood insurance demand," Journal of Risk and Uncertainty, Springer, vol. 63(3), pages 275-318, December.
    7. Henrich Grežo & Matej Močko & Martin Izsóff & Gréta Vrbičanová & František Petrovič & Jozef Straňák & Zlatica Muchová & Martina Slámová & Branislav Olah & Ivo Machar, 2020. "Flood Risk Assessment for the Long-Term Strategic Planning Considering the Placement of Industrial Parks in Slovakia," Sustainability, MDPI, vol. 12(10), pages 1-20, May.
    8. S. Kaliraj & S. Shunmugapriya & C. Lakshumanan & D. Suresh & K. Arun Prasad & Reji Srinivas, 2025. "Flood risk zone mapping and future projections for the Thamirabarani river basin, Southern India: insights from decadal rainfall trends and GIS-based analytical hierarchy process technique," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(5), pages 5327-5361, March.
    9. Antonio Ledda & Elisabetta Anna Di Cesare & Giovanni Satta & Gianluca Cocco & Giovanna Calia & Filippo Arras & Annalisa Congiu & Emanuela Manca & Andrea De Montis, 2020. "Adaptation to Climate Change and Regional Planning: A Scrutiny of Sectoral Instruments," Sustainability, MDPI, vol. 12(9), pages 1-15, May.
    10. Delin Liu & Xiaole Chang & Siyu Wu & Yongling Zhang & Nana Kong & Xiaobing Zhang, 2024. "Influencing Factors of Urban Public Flood Emergency Evacuation Decision Behavior Based on Protection Motivation Theory: An Example from Jiaozuo City, China," Sustainability, MDPI, vol. 16(13), pages 1-15, June.
    11. Tropikë Agaj, 2025. "Integrating AHP and MCDA for flood risk assessment in Kosovo: a catchment-based perspective," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(9), pages 10711-10747, May.
    12. Ahmad Abu Arra & Eyüp Şişman, 2024. "Innovative Drought Classification Matrix and Acceptable Time Period for Temporal Drought Evaluation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(8), pages 2811-2833, June.
    13. Johnson, Caroline A. & Flage, Roger & Guikema, Seth D., 2021. "Feasibility study of PRA for critical infrastructure risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    14. Lin, Yatang & McDermott, Thomas K.J. & Michaels, Guy, 2024. "Cities and the sea level," Journal of Urban Economics, Elsevier, vol. 143(C).
    15. Syed Ahmad Hakim Bin Syed Muzamil & Noor Yasmin Zainun & Nadiatul Nazleen Ajman & Noralfishah Sulaiman & Shabir Hussain Khahro & Munzilah Md. Rohani & Saifullizan Mohd Bukari Mohd & Hilton Ahmad, 2022. "Proposed Framework for the Flood Disaster Management Cycle in Malaysia," Sustainability, MDPI, vol. 14(7), pages 1-21, March.
    16. Mohamad F. N. Aulady & Dwini Handayani & Toshio Fujimi, 2025. "Enhancing emergency kit preparedness of Indonesia’s poor community through insight from behavioral economics," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(2), pages 2095-2110, January.
    17. Wen-chuan Wang & Wei-can Tian & Dong-mei Xu & Kwok-wing Chau & Qiang Ma & Chang-jun Liu, 2023. "Muskingum Models’ Development and their Parameter Estimation: A State-of-the-art Review," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(8), pages 3129-3150, June.
    18. Reguero, Borja G. & Beck, Michael W. & Schmid, David & Stadtmüller, Daniel & Raepple, Justus & Schüssele, Stefan & Pfliegner, Kerstin, 2020. "Financing coastal resilience by combining nature-based risk reduction with insurance," Ecological Economics, Elsevier, vol. 169(C).
    19. Tesselaar, Max & Botzen, W.J. Wouter & Robinson, Peter J. & Aerts, Jeroen C.J.H. & Zhou, Fujin, 2022. "Charity hazard and the flood insurance protection gap: An EU scale assessment under climate change," Ecological Economics, Elsevier, vol. 193(C).
    20. Nash Jett D. G. Reyes & Franz Kevin F. Geronimo & Heidi B. Guerra & Lee-Hyung Kim, 2023. "Bibliometric Analysis and Comprehensive Review of Stormwater Treatment Wetlands: Global Research Trends and Existing Knowledge Gaps," Sustainability, MDPI, vol. 15(3), pages 1-23, January.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:121:y:2025:i:3:d:10.1007_s11069-024-06945-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.