IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v120y2024i6d10.1007_s11069-024-06414-6.html
   My bibliography  Save this article

Novel optimized deep learning algorithms and explainable artificial intelligence for storm surge susceptibility modeling and management in a flood-prone island

Author

Listed:
  • Mohammed J. Alshayeb

    (King Khalid University)

  • Hoang Thi Hang

    (Jamia Millia Islamia)

  • Ahmed Ali A. Shohan

    (King Khalid University)

  • Ahmed Ali Bindajam

    (King Khalid University)

Abstract

Sagar Island, located in the Indian Sundarbans Delta, is extremely vulnerable to storm surge flooding. Therefore, there is a need for a precise model to assess its susceptibility to storm surges, which is essential for efficient coastal management and reducing the risk of disasters. Traditional modeling methods often lack the capability to consider the intricate relationships between various influencing factors. This study aims to advance the field by developing robust deep learning (DL) models for storm surge susceptibility prediction, specifically incorporation of Bayesian optimization with DL models and implementing Explainable Artificial Intelligence (XAI) methods for model interpretation and data-driven management. Storm surge susceptibility in Sagar Island presents a critical problem requiring advanced predictive modeling. We employ Bayesian Optimization for hyperparameter tuning in Deep Neural Networks (DNN), 1D Convolutional Neural Networks (CNN), and LightGBM models, focusing on 11 variables with low multi-collinearity. Additionally, we applied Explainable AI techniques such as SHapley Additive exPlanations (SHAP) and permutation importance for model interpretability. DNN achieved the highest accuracy of 97.75%, with F1-score at 97.85%. LightGBM and CNN were close competitors with an accuracy of 97.5%. DNN’s true positive rate was 95%, compared to CNN’s 94% and LightGBM’s 93%. In the susceptibility mapping analysis, the CNN detected areas categorized as ‘Very Low’ and ‘Very High’ susceptibility, constituting 65.12% of the study area and covering 156.88 km² and 11.38% covering 11.38 km², respectively. Similarly, LightGBM exhibited a comparable pattern, but with a more pronounced representation of ‘High’ susceptibility zones, spanning 22.61 km², predominantly across the coastal and central regions of Sagar Island. Feature importance assessed through SHAP revealed “Rainfall” as 40% more impactful than “Cyclone Track.” While all three models demonstrated robust performance, DNN emerged as marginally superior in most evaluated metrics. Our study provides valuable insights for targeted storm surge management strategies in Sagar Island, combining high predictive accuracy with model interpretability.

Suggested Citation

  • Mohammed J. Alshayeb & Hoang Thi Hang & Ahmed Ali A. Shohan & Ahmed Ali Bindajam, 2024. "Novel optimized deep learning algorithms and explainable artificial intelligence for storm surge susceptibility modeling and management in a flood-prone island," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(6), pages 5099-5128, April.
  • Handle: RePEc:spr:nathaz:v:120:y:2024:i:6:d:10.1007_s11069-024-06414-6
    DOI: 10.1007/s11069-024-06414-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-024-06414-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-024-06414-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:120:y:2024:i:6:d:10.1007_s11069-024-06414-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.