IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32779-y.html
   My bibliography  Save this article

Natural and anthropogenic contributions to the hurricane drought of the 1970s–1980s

Author

Listed:
  • Raphaël Rousseau-Rizzi

    (Massachusetts Institute of Technology)

  • Kerry Emanuel

    (Massachusetts Institute of Technology)

Abstract

Atlantic hurricane activity experienced a pronounced lull during the 1970s and 1980s. The current explanation that anthropogenic aerosol radiative forcing cooled the sea surface locally fails to capture the magnitude of this large decrease in activity. To explain this hurricane drought, we propose that the radiative effects of sulfate aerosols from Europe and North-America decreased precipitation in the Sahara-Sahel region, leading to an enhancement of dust regional emissions and transport over the Atlantic. This dust in turn enhanced the local decrease of sea-surface temperature and of hurricane activity. Here, we show that dust emissions from the Sahara peaked in phase with regional sulfate aerosol optical thickness and Sahel drought conditions, and that dust optical depth variations alone can explain nearly half of the sea-surface temperature depression in the 1970s and 1980s.

Suggested Citation

  • Raphaël Rousseau-Rizzi & Kerry Emanuel, 2022. "Natural and anthropogenic contributions to the hurricane drought of the 1970s–1980s," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32779-y
    DOI: 10.1038/s41467-022-32779-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32779-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32779-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kerry Emanuel, 2005. "Increasing destructiveness of tropical cyclones over the past 30 years," Nature, Nature, vol. 436(7051), pages 686-688, August.
    2. Ben B. B. Booth & Nick J. Dunstone & Paul R. Halloran & Timothy Andrews & Nicolas Bellouin, 2012. "Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability," Nature, Nature, vol. 484(7393), pages 228-232, April.
    3. Gabriel A. Vecchi & Brian J. Soden, 2007. "Effect of remote sea surface temperature change on tropical cyclone potential intensity," Nature, Nature, vol. 450(7172), pages 1066-1070, December.
    4. Amato T. Evan & Cyrille Flamant & Marco Gaetani & Françoise Guichard, 2016. "The past, present and future of African dust," Nature, Nature, vol. 531(7595), pages 493-495, March.
    5. James P. Kossin & Kerry A. Emanuel & Gabriel A. Vecchi, 2014. "The poleward migration of the location of tropical cyclone maximum intensity," Nature, Nature, vol. 509(7500), pages 349-352, May.
    6. Michael E. Mann & Byron A. Steinman & Sonya K. Miller, 2020. "Absence of internal multidecadal and interdecadal oscillations in climate model simulations," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    7. Johan Nyberg & Björn A. Malmgren & Amos Winter & Mark R. Jury & K. Halimeda Kilbourne & Terrence M. Quinn, 2007. "Low Atlantic hurricane activity in the 1970s and 1980s compared to the past 270 years," Nature, Nature, vol. 447(7145), pages 698-701, June.
    8. Kerry Emanuel, 2021. "Atlantic tropical cyclones downscaled from climate reanalyses show increasing activity over past 150 years," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    9. Gabriel A. Vecchi & Christopher Landsea & Wei Zhang & Gabriele Villarini & Thomas Knutson, 2021. "Changes in Atlantic major hurricane frequency since the late-19th century," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    10. Jim M. Haywood & Andy Jones & Nicolas Bellouin & David Stephenson, 2013. "Asymmetric forcing from stratospheric aerosols impacts Sahelian rainfall," Nature Climate Change, Nature, vol. 3(7), pages 660-665, July.
    11. Ben B. B. Booth & Nick J. Dunstone & Paul R. Halloran & Timothy Andrews & Nicolas Bellouin, 2012. "Erratum: Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability," Nature, Nature, vol. 485(7399), pages 534-534, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gan Zhang, 2023. "Warming-induced contraction of tropical convection delays and reduces tropical cyclone formation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kerry Emanuel, 2021. "Atlantic tropical cyclones downscaled from climate reanalyses show increasing activity over past 150 years," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    2. Yi Li & Youmin Tang & Shuai Wang & Ralf Toumi & Xiangzhou Song & Qiang Wang, 2023. "Recent increases in tropical cyclone rapid intensification events in global offshore regions," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Maqsood Mansur & Julia Hopkins & Qin Chen, 2023. "Estuarine response to storm surge and sea-level rise associated with channel deepening: a flood vulnerability assessment of southwest Louisiana, USA," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3879-3897, April.
    4. Alessandra Giannini & Alexey Kaplan, 2019. "The role of aerosols and greenhouse gases in Sahel drought and recovery," Climatic Change, Springer, vol. 152(3), pages 449-466, March.
    5. Kieran Bhatia & Alexander Baker & Wenchang Yang & Gabriel Vecchi & Thomas Knutson & Hiroyuki Murakami & James Kossin & Kevin Hodges & Keith Dixon & Benjamin Bronselaer & Carolyn Whitlock, 2022. "A potential explanation for the global increase in tropical cyclone rapid intensification," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Karthik Balaguru & David R. Judi & L. Ruby Leung, 2016. "Future hurricane storm surge risk for the U.S. gulf and Florida coasts based on projections of thermodynamic potential intensity," Climatic Change, Springer, vol. 138(1), pages 99-110, September.
    7. Yoko Yamagami & Masahiro Watanabe & Masato Mori & Jun Ono, 2022. "Barents-Kara sea-ice decline attributed to surface warming in the Gulf Stream," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Yanfeng Wang & Ping Huang, 2022. "Potential fire risks in South America under anthropogenic forcing hidden by the Atlantic Multidecadal Oscillation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. John Miller & Guilherme Vieira Silva & Darrell Strauss, 2023. "Divergence of tropical cyclone hazard based on wind-weighted track distributions in the Coral Sea, over 50 years," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 2591-2617, March.
    10. Simon L. L. Michel & Didier Swingedouw & Pablo Ortega & Guillaume Gastineau & Juliette Mignot & Gerard McCarthy & Myriam Khodri, 2022. "Early warning signal for a tipping point suggested by a millennial Atlantic Multidecadal Variability reconstruction," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    11. Debashis Paul & Jagabandhu Panda & Ashish Routray, 2022. "Ocean and atmospheric characteristics associated with the cyclogenesis and rapid intensification of NIO super cyclonic storms during 1981–2020," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(1), pages 261-289, October.
    12. Fukai Liu & Xun Li & Yiyong Luo & Wenju Cai & Jian Lu & Xiao-Tong Zheng & Sarah M. Kang & Hai Wang & Lei Zhou, 2024. "Increased Asian aerosols drive a slowdown of Atlantic Meridional Overturning Circulation," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    13. Yunpeng Luo & Huai Chen & Qiu'an Zhu & Changhui Peng & Gang Yang & Yanzheng Yang & Yao Zhang, 2014. "Relationship between Air Pollutants and Economic Development of the Provincial Capital Cities in China during the Past Decade," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-14, August.
    14. Andrew Condon & Y. Peter Sheng, 2012. "Evaluation of coastal inundation hazard for present and future climates," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 62(2), pages 345-373, June.
    15. Melbourne-Thomas, J. & Johnson, C.R. & Fulton, E.A., 2011. "Regional-scale scenario analysis for the Meso-American Reef system: Modelling coral reef futures under multiple stressors," Ecological Modelling, Elsevier, vol. 222(10), pages 1756-1770.
    16. Chenyu Zhu & Zhengyu Liu & Shaoqing Zhang & Lixin Wu, 2023. "Likely accelerated weakening of Atlantic overturning circulation emerges in optimal salinity fingerprint," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    17. Shifei Tu & Johnny C. L. Chan & Jianjun Xu & Quanjia Zhong & Wen Zhou & Yu Zhang, 2022. "Increase in tropical cyclone rain rate with translation speed," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    18. James M. Done & Debasish PaiMazumder & Erin Towler & Chandra M. Kishtawal, 2018. "Estimating impacts of North Atlantic tropical cyclones using an index of damage potential," Climatic Change, Springer, vol. 146(3), pages 561-573, February.
    19. Sidha Sankalpa Moharana & Debadatta Swain, 2023. "On the recent increase in Atlantic Ocean hurricane activity and influencing factors," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(2), pages 1387-1399, September.
    20. Zhili Wang & Yadong Lei & Huizheng Che & Bo Wu & Xiaoye Zhang, 2024. "Aerosol forcing regulating recent decadal change of summer water vapor budget over the Tibetan Plateau," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32779-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.