IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v120y2024i3d10.1007_s11069-023-06320-3.html
   My bibliography  Save this article

Modeling agricultural drought based on the earth observation-derived standardized precipitation evapotranspiration index and vegetation health index in the northeastern highlands of Ethiopia

Author

Listed:
  • Zerihun Chere

    (Dire Dawa University)

  • Dereje Biru Debalke

    (Bonga University)

Abstract

For farmers in the South Wollo Zone, drought has been one of the most devastating natural disasters, making better monitoring of agricultural drought with the aid of earth observation data essential. The main objective of this research is to characterize the spatiotemporal variation, frequency, and trends of agricultural drought from 2001 to 2021 using the earth observation-derived vegetation health index (VHI) and standardized precipitation evapotranspiration index (SPEI). The VHI and SPEI were developed using the following variables: potential evapotranspiration (MOD16A2GF), climatic hazards group infrared precipitation with stations (CHIRPS), surface temperature of the land and emissivity (MOD11A2), and normalized difference vegetation index (MOD13Q1 NDVI). The Mann–Kendall (MK) trends analysis and Pearson correlation were used to identify the trend and the relationship between VHI and SPEI. SPEI and VHI were validated using crop yield data. According to the findings, there were agricultural droughts of varying severity in 2002, 2004, 2009, 2010, 2014, and 2015. The results demonstrated a decreasing SPEI (87.5%) and VHI (57.4%) slope during July. The comparison between the SPEI and VHI was positive and significant on the seasonal scale (r = 0.56, p = 0.01). The regression analysis results showed that detrended crop yields agreed well with VHI (R2/r = 0.49/0.70, P

Suggested Citation

  • Zerihun Chere & Dereje Biru Debalke, 2024. "Modeling agricultural drought based on the earth observation-derived standardized precipitation evapotranspiration index and vegetation health index in the northeastern highlands of Ethiopia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(3), pages 3127-3151, February.
  • Handle: RePEc:spr:nathaz:v:120:y:2024:i:3:d:10.1007_s11069-023-06320-3
    DOI: 10.1007/s11069-023-06320-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-023-06320-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-023-06320-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Amba Shalishe & Anirudh Bhowmick & Kumneger Elias, 2023. "Agricultural drought analysis and its association among land surface temperature, soil moisture and precipitation in Gamo Zone, Southern Ethiopia: a remote sensing approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(1), pages 57-70, May.
    2. Feng, Puyu & Wang, Bin & Liu, De Li & Yu, Qiang, 2019. "Machine learning-based integration of remotely-sensed drought factors can improve the estimation of agricultural drought in South-Eastern Australia," Agricultural Systems, Elsevier, vol. 173(C), pages 303-316.
    3. Thomas Pave Sohnesen, 2020. "Two Sides to Same Drought: Measurement and Impact of Ethiopia’s 2015 Historical Drought," Economics of Disasters and Climate Change, Springer, vol. 4(1), pages 83-101, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xinzhi & Lin, Qingxia & Wu, Zhiyong & Zhang, Yuliang & Li, Changwen & Liu, Ji & Zhang, Shinan & Li, Songyu, 2025. "Agricultural GDP exposure to drought and its machine learning-based prediction in the Jialing River Basin, China," Agricultural Water Management, Elsevier, vol. 307(C).
    2. Natalie Teale & David A. Robinson, 2022. "Long-term variability in atmospheric moisture transport and relationship with heavy precipitation in the eastern USA," Climatic Change, Springer, vol. 175(1), pages 1-23, November.
    3. Richard Freund & Marta Favara & Catherine Porter & Jere Behrman, 2024. "Social Protection and Foundational Cognitive Skills during Adolescence: Evidence from a Large Public Works Program," The World Bank Economic Review, World Bank, vol. 38(2), pages 296-318.
    4. Md. Monirul Islam & Shusuke Matsushita & Ryozo Noguchi & Tofael Ahamed, 2022. "A damage-based crop insurance system for flash flooding: a satellite remote sensing and econometric approach," Asia-Pacific Journal of Regional Science, Springer, vol. 6(1), pages 47-89, February.
    5. Yongkang Li & Qing He & Yongqiang Liu & Amina Maituerdi & Yang Yan & Jiao Tan, 2024. "Development and Evaluation of Machine Learning Models for Air-to-Land Temperature Conversion Using the Newly Established Kunlun Mountain Gradient Observation System," Land, MDPI, vol. 13(11), pages 1-26, November.
    6. Markhof,Yannick Valentin & Ponzini,Giulia & Wollburg,Philip Randolph, 2022. "Measuring Disaster Crop Production Losses Using Survey Microdata : Evidence from Sub-Saharan Africa," Policy Research Working Paper Series 9968, The World Bank.
    7. Israel R. Orimoloye & Adeyemi O. Olusola & Johanes A. Belle & Chaitanya B. Pande & Olusola O. Ololade, 2022. "Drought disaster monitoring and land use dynamics: identification of drought drivers using regression-based algorithms," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(2), pages 1085-1106, June.
    8. Farshad Ahmadi & Saeid Mehdizadeh & Babak Mohammadi, 2021. "Development of Bio-Inspired- and Wavelet-Based Hybrid Models for Reconnaissance Drought Index Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 4127-4147, September.
    9. Lei Liu & Jianqin Ma & Xiuping Hao & Qingyun Li, 2019. "Limitations of Water Resources to Crop Water Requirement in the Irrigation Districts along the Lower Reach of the Yellow River in China," Sustainability, MDPI, vol. 11(17), pages 1-18, August.
    10. Hai‐Anh H. Dang & Stephane Hallegatte & Trong‐Anh Trinh, 2024. "Does global warming worsen poverty and inequality? An updated review," Journal of Economic Surveys, Wiley Blackwell, vol. 38(5), pages 1873-1905, December.
    11. Changfu Tong & Hongfei Hou & Hexiang Zheng & Ying Wang & Jin Liu, 2024. "A Coupled Model for Forecasting Spatiotemporal Variability of Regional Drought in the Mu Us Sandy Land Using a Meta-Heuristic Algorithm," Land, MDPI, vol. 13(11), pages 1-22, October.
    12. Xiao, Xin & Ming, Wenting & Luo, Xuan & Yang, Luyi & Li, Meng & Yang, Pengwu & Ji, Xuan & Li, Yungang, 2024. "Leveraging multisource data for accurate agricultural drought monitoring: A hybrid deep learning model," Agricultural Water Management, Elsevier, vol. 293(C).
    13. Ji Eun Kim & Jisoo Yu & Jae-Hee Ryu & Joo-Heon Lee & Tae-Woong Kim, 2021. "Assessment of regional drought vulnerability and risk using principal component analysis and a Gaussian mixture model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 707-724, October.
    14. Maryia Bakhtsiyarava & Tim G. Williams & Andrew Verdin & Seth D. Guikema, 2021. "A nonparametric analysis of household-level food insecurity and its determinant factors: exploratory study in Ethiopia and Nigeria," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 13(1), pages 55-70, February.
    15. Qian Zhu & Yulin Luo & Dongyang Zhou & Yue-Ping Xu & Guoqing Wang & Ye Tian, 2021. "Drought prediction using in situ and remote sensing products with SVM over the Xiang River Basin, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(2), pages 2161-2185, January.
    16. Endre Harsányi & Bashar Bashir & Firas Alsilibe & Muhammad Farhan Ul Moazzam & Tamás Ratonyi & Abdullah Alsalman & Adrienn Széles & Aniko Nyeki & István Takács & Safwan Mohammed, 2022. "Predicting Modified Fournier Index by Using Artificial Neural Network in Central Europe," IJERPH, MDPI, vol. 19(17), pages 1-19, August.
    17. Ruchika Nanwani & Md Mahmudul Hasan & Silvia Cirstea, 2023. "Techniques used to predict climate risks: a brief literature survey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(2), pages 925-951, September.
    18. Ning Luo & Qingfeng Meng & Puyu Feng & Ziren Qu & Yonghong Yu & De Li Liu & Christoph Müller & Pu Wang, 2023. "China can be self-sufficient in maize production by 2030 with optimal crop management," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    19. Pilar Benito-Verdugo & José Martínez-Fernández & Ángel González-Zamora & Laura Almendra-Martín & Jaime Gaona & Carlos Miguel Herrero-Jiménez, 2023. "Impact of Agricultural Drought on Barley and Wheat Yield: A Comparative Case Study of Spain and Germany," Agriculture, MDPI, vol. 13(11), pages 1-20, November.
    20. Fengjie Gao & Si Zhang & Rui Yu & Yafang Zhao & Yuxin Chen & Ying Zhang, 2023. "Agricultural Drought Risk Assessment Based on a Comprehensive Model Using Geospatial Techniques in Songnen Plain, China," Land, MDPI, vol. 12(6), pages 1-19, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:120:y:2024:i:3:d:10.1007_s11069-023-06320-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.