IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v105y2021i3d10.1007_s11069-020-04438-2.html
   My bibliography  Save this article

Comparison of different methodologies for rainfall–runoff modeling: machine learning vs conceptual approach

Author

Listed:
  • Rana Muhammad Adnan

    (Hohai University)

  • Andrea Petroselli

    (University of Tuscia)

  • Salim Heddam

    (Faculty of Science, Agronomy Department, Hydraulics Division)

  • Celso Augusto Guimarães Santos

    (Federal University of Paraíba)

  • Ozgur Kisi

    (Ilia State University
    Duy Tan University)

Abstract

Accurate short-term rainfall–runoff prediction is essential for flood mitigation and safety of hydraulic structures and infrastructures. This study investigates the capability of four machine learning methods (MLM), optimal pruning extreme learning machine (OPELM), multivariate adaptive regression spline (MARS), M5 model tree (M5Tree, and hybridized MARS and Kmeans algorithm (MARS-Kmeans), in hourly rainfall–runoff modeling (considering 1-, 6- and 12-h horizons). Their results are compared with a conceptual method, Event-Based Approach for Small and Ungauged Basins (EBA4SUB) and multi-linear regression (MLR). Hourly rainfall and runoff data gathered from Ilme River watershed, Germany, were divided into two equal parts, and MLM were validated considering each part by swapping training and testing datasets. MLM were compared with EBA4SUB using four events and with respect to three statistics, root-mean-square errors (RMSE), mean absolute error (MAE) and Nash–Sutcliffe efficiency (NSE). Comparison results revealed that the newly developed hybridized MARS-Kmeans method performed superior to the OPELM, MARS, M5Tree and MLR methods in prediction of 1-, 6- and 12-h ahead runoff. Comparison with conceptual method showed that all the machine learning models outperformed the EBA4SUB and OPELM provided slightly better performance than the other three alternatives in event-based rainfall–runoff modeling. Graphic abstract

Suggested Citation

  • Rana Muhammad Adnan & Andrea Petroselli & Salim Heddam & Celso Augusto Guimarães Santos & Ozgur Kisi, 2021. "Comparison of different methodologies for rainfall–runoff modeling: machine learning vs conceptual approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(3), pages 2987-3011, February.
  • Handle: RePEc:spr:nathaz:v:105:y:2021:i:3:d:10.1007_s11069-020-04438-2
    DOI: 10.1007/s11069-020-04438-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-020-04438-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-020-04438-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Krishna Singh & Mahesh Pal & V. Singh, 2010. "Estimation of Mean Annual Flood in Indian Catchments Using Backpropagation Neural Network and M5 Model Tree," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 2007-2019, August.
    2. Glenn Milligan & Martha Cooper, 1985. "An examination of procedures for determining the number of clusters in a data set," Psychometrika, Springer;The Psychometric Society, vol. 50(2), pages 159-179, June.
    3. Zaher Mundher Yaseen & Ozgur Kisi & Vahdettin Demir, 2016. "Enhancing Long-Term Streamflow Forecasting and Predicting using Periodicity Data Component: Application of Artificial Intelligence," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4125-4151, September.
    4. Rana Muhammad Adnan & Xiaohui Yuan & Ozgur Kisi & Muhammad Adnan & Asif Mehmood, 2018. "Stream Flow Forecasting of Poorly Gauged Mountainous Watershed by Least Square Support Vector Machine, Fuzzy Genetic Algorithm and M5 Model Tree Using Climatic Data from Nearby Station," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(14), pages 4469-4486, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huiqi Deng & Wenjie Chen & Guoru Huang, 2022. "Deep insight into daily runoff forecasting based on a CNN-LSTM model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(3), pages 1675-1696, September.
    2. Abhinav Kumar Singh & Pankaj Kumar & Rawshan Ali & Nadhir Al-Ansari & Dinesh Kumar Vishwakarma & Kuldeep Singh Kushwaha & Kanhu Charan Panda & Atish Sagar & Ehsan Mirzania & Ahmed Elbeltagi & Alban Ku, 2022. "An Integrated Statistical-Machine Learning Approach for Runoff Prediction," Sustainability, MDPI, vol. 14(13), pages 1-30, July.
    3. Amir Molajou & Vahid Nourani & Abbas Afshar & Mina Khosravi & Adam Brysiewicz, 2021. "Optimal Design and Feature Selection by Genetic Algorithm for Emotional Artificial Neural Network (EANN) in Rainfall-Runoff Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(8), pages 2369-2384, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rana Muhammad Adnan & Zhongmin Liang & Xiaohui Yuan & Ozgur Kisi & Muhammad Akhlaq & Binquan Li, 2019. "Comparison of LSSVR, M5RT, NF-GP, and NF-SC Models for Predictions of Hourly Wind Speed and Wind Power Based on Cross-Validation," Energies, MDPI, vol. 12(2), pages 1-22, January.
    2. Sungwon Kim & Meysam Alizamir & Nam Won Kim & Ozgur Kisi, 2020. "Bayesian Model Averaging: A Unique Model Enhancing Forecasting Accuracy for Daily Streamflow Based on Different Antecedent Time Series," Sustainability, MDPI, vol. 12(22), pages 1-22, November.
    3. Liu, Pei-chen Barry & Hansen, Mark & Mukherjee, Avijit, 2008. "Scenario-based air traffic flow management: From theory to practice," Transportation Research Part B: Methodological, Elsevier, vol. 42(7-8), pages 685-702, August.
    4. Ming Wei & Xue-yi You, 2022. "Monthly rainfall forecasting by a hybrid neural network of discrete wavelet transformation and deep learning," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(11), pages 4003-4018, September.
    5. Tao, Hai & Diop, Lamine & Bodian, Ansoumana & Djaman, Koffi & Ndiaye, Papa Malick & Yaseen, Zaher Mundher, 2018. "Reference evapotranspiration prediction using hybridized fuzzy model with firefly algorithm: Regional case study in Burkina Faso," Agricultural Water Management, Elsevier, vol. 208(C), pages 140-151.
    6. Li, Pai-Ling & Chiou, Jeng-Min, 2011. "Identifying cluster number for subspace projected functional data clustering," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2090-2103, June.
    7. Alessandra Cepparulo & Antonello Zanfei, 2019. "The diffusion of public eServices in European cities," Working Papers 1904, University of Urbino Carlo Bo, Department of Economics, Society & Politics - Scientific Committee - L. Stefanini & G. Travaglini, revised 2019.
    8. Noelia Caceres & Luis M. Romero & Francisco J. Morales & Antonio Reyes & Francisco G. Benitez, 2018. "Estimating traffic volumes on intercity road locations using roadway attributes, socioeconomic features and other work-related activity characteristics," Transportation, Springer, vol. 45(5), pages 1449-1473, September.
    9. Michele Cincera, 2005. "Firms' productivity growth and R&D spillovers: An analysis of alternative technological proximity measures," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 14(8), pages 657-682.
    10. Douglas L. Steinley & M. J. Brusco, 2019. "Using an Iterative Reallocation Partitioning Algorithm to Verify Test Multidimensionality," Journal of Classification, Springer;The Classification Society, vol. 36(3), pages 397-413, October.
    11. Sarmad Dashti Latif & Ali Najah Ahmed, 2023. "A review of deep learning and machine learning techniques for hydrological inflow forecasting," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 12189-12216, November.
    12. Javier Sevil-Serrano & Alberto Aibar-Solana & Ángel Abós & José Antonio Julián & Luis García-González, 2019. "Healthy or Unhealthy? The Cocktail of Health-Related Behavior Profiles in Spanish Adolescents," IJERPH, MDPI, vol. 16(17), pages 1-14, August.
    13. Jacques-Antoine Gauthier & Eric D. Widmer & Philipp Bucher & Cédric Notredame, 2009. "How Much Does It Cost?," Sociological Methods & Research, , vol. 38(1), pages 197-231, August.
    14. Jack DeWaard & Keuntae Kim & James Raymer, 2012. "Migration Systems in Europe: Evidence From Harmonized Flow Data," Demography, Springer;Population Association of America (PAA), vol. 49(4), pages 1307-1333, November.
    15. Hui Zhang & Cunhua Pan & Yuanxin Wang & Min Xu & Fu Zhou & Xin Yang & Lou Zhu & Chao Zhao & Yangfan Song & Hongwei Chen, 2022. "Fault Diagnosis of Coal Mill Based on Kernel Extreme Learning Machine with Variational Model Feature Extraction," Energies, MDPI, vol. 15(15), pages 1-14, July.
    16. Vicente Rodríguez Montequín & Joaquín Villanueva Balsera & Sonia María Cousillas Fernández & Francisco Ortega Fernández, 2018. "Exploring Project Complexity through Project Failure Factors: Analysis of Cluster Patterns Using Self-Organizing Maps," Complexity, Hindawi, vol. 2018, pages 1-17, May.
    17. Goethner, Maximilian & Hornuf, Lars & Regner, Tobias, 2021. "Protecting investors in equity crowdfunding: An empirical analysis of the small investor protection act," Technological Forecasting and Social Change, Elsevier, vol. 162(C).
    18. Maria Lo Bue & Stephan Klasen, 2013. "Identifying Synergies and Complementarities Between MDGs: Results from Cluster Analysis," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 113(2), pages 647-670, September.
    19. Valérie Barraud-Didier & Marie-Christine Henninger & Pierre Triboulet, 2014. "La Participation des Adhérents Dans Leurs Coopératives Agricoles: Une Étude Exploratoire du Secteur Céréalier Français," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 62(1), pages 125-148, March.
    20. Latruffe, Laure & Dupuy, Aurelia & Desjeux, Yann, 2012. "What would farmers’ strategies be in a no-CAP situation? An illustration to France," 86th Annual Conference, April 16-18, 2012, Warwick University, Coventry, UK 134989, Agricultural Economics Society.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:105:y:2021:i:3:d:10.1007_s11069-020-04438-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.