IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v88y2025i3d10.1007_s00184-024-00956-2.html
   My bibliography  Save this article

Bootstrap for inference after model selection and model averaging for likelihood models

Author

Listed:
  • Andrea C. Garcia-Angulo

    (Escuela Superior Politécnica del Litoral, ESPOL)

  • Gerda Claeskens

    (KU Leuven)

Abstract

A one-step semiparametric bootstrap procedure is constructed to estimate the distribution of estimators after model selection and of model averaging estimators with data-dependent weights. The method is generally applicable to non-normal models. Misspecification is allowed for all candidate parametric models. The semiparametric bootstrap estimator is shown to be consistent within specific regions such that the good and the bad candidate models are separated. Simulation studies exemplify that the bootstrap procedure leads to short confidence intervals with a good coverage.

Suggested Citation

  • Andrea C. Garcia-Angulo & Gerda Claeskens, 2025. "Bootstrap for inference after model selection and model averaging for likelihood models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 88(3), pages 311-340, April.
  • Handle: RePEc:spr:metrik:v:88:y:2025:i:3:d:10.1007_s00184-024-00956-2
    DOI: 10.1007/s00184-024-00956-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00184-024-00956-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00184-024-00956-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aerts, Marc & Claeskens, Gerda, 2001. "Bootstrap tests for misspecified models, with application to clustered binary data," Computational Statistics & Data Analysis, Elsevier, vol. 36(3), pages 383-401, May.
    2. White,Halbert, 1996. "Estimation, Inference and Specification Analysis," Cambridge Books, Cambridge University Press, number 9780521574464, Enero.
    3. Giurcanu, Mihai C., 2012. "Bootstrapping in non-regular smooth function models," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 78-93.
    4. Andrea C. Garcia‐Angulo & Gerda Claeskens, 2023. "Exact uniformly most powerful postselection confidence distributions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 50(1), pages 358-382, March.
    5. Paul Kabaila & A. H. Welsh & Waruni Abeysekera, 2016. "Model-Averaged Confidence Intervals," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(1), pages 35-48, March.
    6. S M S Lee & Y Wu, 2018. "A bootstrap recipe for post-model-selection inference under linear regression models," Biometrika, Biometrika Trust, vol. 105(4), pages 873-890.
    7. Ali Charkhi & Gerda Claeskens, 2018. "Asymptotic post-selection inference for the Akaike information criterion," Biometrika, Biometrika Trust, vol. 105(3), pages 645-664.
    8. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    9. L. Camponovo, 2015. "On the validity of the pairs bootstrap for lasso estimators," Biometrika, Biometrika Trust, vol. 102(4), pages 981-987.
    10. Leeb, Hannes & Pötscher, Benedikt M., 2008. "Can One Estimate The Unconditional Distribution Of Post-Model-Selection Estimators?," Econometric Theory, Cambridge University Press, vol. 24(2), pages 338-376, April.
    11. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    12. Paul Kabaila, 2009. "The Coverage Properties of Confidence Regions After Model Selection," International Statistical Review, International Statistical Institute, vol. 77(3), pages 405-414, December.
    13. Bradley Efron, 2014. "Estimation and Accuracy After Model Selection," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 991-1007, September.
    14. Sin, Chor-Yiu & White, Halbert, 1996. "Information criteria for selecting possibly misspecified parametric models," Journal of Econometrics, Elsevier, vol. 71(1-2), pages 207-225.
    15. W. Lu & Y. Goldberg & J. P. Fine, 2012. "On the robustness of the adaptive lasso to model misspecification," Biometrika, Biometrika Trust, vol. 99(3), pages 717-731.
    16. Danilov, Dmitry & Magnus, J.R.Jan R., 2004. "On the harm that ignoring pretesting can cause," Journal of Econometrics, Elsevier, vol. 122(1), pages 27-46, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pirenne, Sarah & Claeskens, Gerda, 2024. "Exact post-selection inference for adjusted R squared selection," Statistics & Probability Letters, Elsevier, vol. 211(C).
    2. Tae-Hwy Lee & Zhou Xi & Ru Zhang, 2013. "Testing for Neglected Nonlinearity Using Regularized Artificial Neural Networks," Working Papers 201422, University of California at Riverside, Department of Economics, revised Apr 2012.
    3. Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2013. "Program evaluation with high-dimensional data," CeMMAP working papers CWP57/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    4. Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2014. "High-Dimensional Methods and Inference on Structural and Treatment Effects," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 29-50, Spring.
    5. Paul Kabaila & Christeen Wijethunga, 2024. "Confidence intervals centred on bootstrap smoothed estimators: an impossibility result," Statistical Papers, Springer, vol. 65(3), pages 1531-1551, May.
    6. Farrell, Max H., 2015. "Robust inference on average treatment effects with possibly more covariates than observations," Journal of Econometrics, Elsevier, vol. 189(1), pages 1-23.
    7. Wan, Alan T.K. & Zhang, Xinyu & Wang, Shouyang, 2014. "Frequentist model averaging for multinomial and ordered logit models," International Journal of Forecasting, Elsevier, vol. 30(1), pages 118-128.
    8. Ghosh, D. & Yuan, Z., 2009. "An improved model averaging scheme for logistic regression," Journal of Multivariate Analysis, Elsevier, vol. 100(8), pages 1670-1681, September.
    9. Gueuning, Thomas & Claeskens, Gerda, 2016. "Confidence intervals for high-dimensional partially linear single-index models," Journal of Multivariate Analysis, Elsevier, vol. 149(C), pages 13-29.
    10. Ng, Serena, 2013. "Variable Selection in Predictive Regressions," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 752-789, Elsevier.
    11. Christian Hansen & Damian Kozbur & Sanjog Misra, 2016. "Targeted undersmoothing," ECON - Working Papers 282, Department of Economics - University of Zurich, revised Apr 2018.
    12. Aman Ullah & Huansha Wang, 2013. "Parametric and Nonparametric Frequentist Model Selection and Model Averaging," Econometrics, MDPI, vol. 1(2), pages 1-23, September.
    13. Mihai C. Giurcanu, 2017. "Oracle M-Estimation for Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(3), pages 479-504, May.
    14. Pötscher, Benedikt M. & Leeb, Hannes, 2009. "On the distribution of penalized maximum likelihood estimators: The LASSO, SCAD, and thresholding," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2065-2082, October.
    15. Susan M. Shortreed & Ashkan Ertefaie, 2017. "Outcome‐adaptive lasso: Variable selection for causal inference," Biometrics, The International Biometric Society, vol. 73(4), pages 1111-1122, December.
    16. Andrea C. Garcia‐Angulo & Gerda Claeskens, 2023. "Exact uniformly most powerful postselection confidence distributions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 50(1), pages 358-382, March.
    17. Tang, Niansheng & Yan, Xiaodong & Zhao, Puying, 2018. "Exponentially tilted likelihood inference on growing dimensional unconditional moment models," Journal of Econometrics, Elsevier, vol. 202(1), pages 57-74.
    18. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    19. Xu, Yang & Zhao, Shishun & Hu, Tao & Sun, Jianguo, 2021. "Variable selection for generalized odds rate mixture cure models with interval-censored failure time data," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    20. Emmanouil Androulakis & Christos Koukouvinos & Kalliopi Mylona & Filia Vonta, 2010. "A real survival analysis application via variable selection methods for Cox's proportional hazards model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(8), pages 1399-1406.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:88:y:2025:i:3:d:10.1007_s00184-024-00956-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.