IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v84y2021i7d10.1007_s00184-021-00812-7.html
   My bibliography  Save this article

Asymptotic theory for regression models with fractional local to unity root errors

Author

Listed:
  • Kris Brabanter

    (Iowa State University
    Iowa State University)

  • Farzad Sabzikar

    (Iowa State University)

Abstract

This paper develops the asymptotic theory for parametric and nonparametric regression models when the errors have a fractional local to unity root (FLUR) model structure. FLUR models are stationary time series with semi-long range dependence property in the sense that their covariance function resembles that of a long memory model for moderate lags but eventually diminishes exponentially fast according to the presence of a decay factor governed by a an exponential tempering parameter. When this parameter is sample size dependent, the asymptotic theory for these regression models admit a wide range of stochastic processes with behavior that includes long, semi-long, and short memory processes.

Suggested Citation

  • Kris Brabanter & Farzad Sabzikar, 2021. "Asymptotic theory for regression models with fractional local to unity root errors," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(7), pages 997-1024, October.
  • Handle: RePEc:spr:metrik:v:84:y:2021:i:7:d:10.1007_s00184-021-00812-7
    DOI: 10.1007/s00184-021-00812-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00184-021-00812-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00184-021-00812-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sabzikar, Farzad & Surgailis, Donatas, 2018. "Tempered fractional Brownian and stable motions of second kind," Statistics & Probability Letters, Elsevier, vol. 132(C), pages 17-27.
    2. GIRAITIS, Liudas & KOKOSZKA, Piotr & LEIPUS, Remigijus & TEYSSIÈRE, Gilles, 2003. "On the power of R/S-type tests under contiguous and semi-long memory alternatives," LIDAM Reprints CORE 1638, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. Peter C.B. Phillips, 1987. "Multiple Regression with Integrated Time Series," Cowles Foundation Discussion Papers 852, Cowles Foundation for Research in Economics, Yale University.
    4. Peter C. B. Phillips & Jun Yu, 2011. "Dating the timeline of financial bubbles during the subprime crisis," Quantitative Economics, Econometric Society, vol. 2(3), pages 455-491, November.
    5. Pipiras, Vladas & Taqqu, Murad S., 2000. "Convergence of weighted sums of random variables with long-range dependence," Stochastic Processes and their Applications, Elsevier, vol. 90(1), pages 157-174, November.
    6. K De Brabanter & F Cao & I Gijbels & J Opsomer, 2018. "Local polynomial regression with correlated errors in random design and unknown correlation structure," Biometrika, Biometrika Trust, vol. 105(3), pages 681-690.
    7. Sabzikar, Farzad & Surgailis, Donatas, 2018. "Invariance principles for tempered fractionally integrated processes," Stochastic Processes and their Applications, Elsevier, vol. 128(10), pages 3419-3438.
    8. Granger, Clive W. J. & Ding, Zhuanxin, 1996. "Varieties of long memory models," Journal of Econometrics, Elsevier, vol. 73(1), pages 61-77, July.
    9. Peter C. B. Phillips & Shuping Shi & Jun Yu, 2015. "Testing For Multiple Bubbles: Limit Theory Of Real‐Time Detectors," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 56, pages 1079-1134, November.
    10. Giraitis, Liudas & Kokoszka, Piotr & Leipus, Remigijus, 2000. "Stationary Arch Models: Dependence Structure And Central Limit Theorem," Econometric Theory, Cambridge University Press, vol. 16(1), pages 3-22, February.
    11. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    12. Yuanhua Feng & Jan Beran, 2013. "Optimal convergence rates in non-parametric regression with fractional time series errors," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(1), pages 30-39, January.
    13. Peter C. B. Phillips & Shuping Shi & Jun Yu, 2015. "Testing For Multiple Bubbles: Limit Theory Of Real‐Time Detectors," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 56(4), pages 1079-1134, November.
    14. Dacorogna, Michael M. & Muller, Ulrich A. & Nagler, Robert J. & Olsen, Richard B. & Pictet, Olivier V., 1993. "A geographical model for the daily and weekly seasonal volatility in the foreign exchange market," Journal of International Money and Finance, Elsevier, vol. 12(4), pages 413-438, August.
    15. Hall, Peter & Hart, Jeffrey D., 1990. "Nonparametric regression with long-range dependence," Stochastic Processes and their Applications, Elsevier, vol. 36(2), pages 339-351, December.
    16. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    17. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    18. Deo, R. S., 1997. "Nonparametric regression with long-memory errors," Statistics & Probability Letters, Elsevier, vol. 33(1), pages 89-94, April.
    19. C. W. J. Granger & Roselyne Joyeux, 1980. "An Introduction To Long‐Memory Time Series Models And Fractional Differencing," Journal of Time Series Analysis, Wiley Blackwell, vol. 1(1), pages 15-29, January.
    20. Robinson, Peter M., 1997. "Large-sample inference for nonparametric regression with dependent errors," LSE Research Online Documents on Economics 302, London School of Economics and Political Science, LSE Library.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sabzikar, Farzad & Wang, Qiying & Phillips, Peter C.B., 2020. "Asymptotic theory for near integrated processes driven by tempered linear processes," Journal of Econometrics, Elsevier, vol. 216(1), pages 192-202.
    2. Lui, Yiu Lim & Phillips, Peter C.B. & Yu, Jun, 2024. "Robust testing for explosive behavior with strongly dependent errors," Journal of Econometrics, Elsevier, vol. 238(2).
    3. Haldrup, Niels & Nielsen, Morten Orregaard, 2006. "A regime switching long memory model for electricity prices," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 349-376.
    4. Pierre Perron & Zhongjun Qu, 2006. "An Analytical Evaluation of the Log-periodogram Estimate in the Presence of Level Shifts and its Implications for Stock Returns Volatility," Boston University - Department of Economics - Working Papers Series WP2006-016, Boston University - Department of Economics.
    5. Farzad Sabzikar & Qiying Wang & Peter C.B. Phillips, 2018. "Asymptotic Theory for Near Integrated Process Driven by Tempered Linear Process," Cowles Foundation Discussion Papers 2131, Cowles Foundation for Research in Economics, Yale University.
    6. Lin, Yingqian & Tu, Yundong, 2020. "Robust inference for spurious regressions and cointegrations involving processes moderately deviated from a unit root," Journal of Econometrics, Elsevier, vol. 219(1), pages 52-65.
    7. Susanne M. Schennach, 2018. "Long Memory via Networking," Econometrica, Econometric Society, vol. 86(6), pages 2221-2248, November.
    8. Sabzikar, Farzad & Surgailis, Donatas, 2018. "Invariance principles for tempered fractionally integrated processes," Stochastic Processes and their Applications, Elsevier, vol. 128(10), pages 3419-3438.
    9. Farzad Sabzikar & Piotr Kokoszka, 2023. "Tempered functional time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(3), pages 280-293, May.
    10. Bhardwaj, Geetesh & Swanson, Norman R., 2006. "An empirical investigation of the usefulness of ARFIMA models for predicting macroeconomic and financial time series," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 539-578.
    11. Gary Biglaiser & Ching-to Albert Ma, 2007. "Moonlighting: public service and private practice," RAND Journal of Economics, RAND Corporation, vol. 38(4), pages 1113-1133, December.
    12. Emma Iglesias & Garry Phillips, 2005. "Analysing one-month Euro-market interest rates by fractionally integrated models," Applied Financial Economics, Taylor & Francis Journals, vol. 15(2), pages 95-106.
    13. Manuel Monge & Ana Lazcano, 2022. "Commodity Prices after COVID-19: Persistence and Time Trends," Risks, MDPI, vol. 10(6), pages 1-20, June.
    14. Wang, Xiaohu & Yu, Jun, 2016. "Double asymptotics for explosive continuous time models," Journal of Econometrics, Elsevier, vol. 193(1), pages 35-53.
    15. Guglielmo Maria Caporale & Luis A. Gil‐Alana & James C. Orlando, 2016. "Linkages Between the US and European Stock Markets: A Fractional Cointegration Approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 21(2), pages 143-153, April.
    16. Laurent, Sébastien & Shi, Shuping, 2020. "Volatility estimation and jump detection for drift–diffusion processes," Journal of Econometrics, Elsevier, vol. 217(2), pages 259-290.
    17. Beran, Jan & Sabzikar, Farzad & Surgailis, Donatas & Telkmann, Klaus, 2020. "On the empirical process of tempered moving averages," Statistics & Probability Letters, Elsevier, vol. 167(C).
    18. Carlos Pestana Barros & Luis Gil-Alana, 2006. "Eta: A Persistent Phenomenon," Defence and Peace Economics, Taylor & Francis Journals, vol. 17(2), pages 95-116.
    19. Bent Jesper Christensen & Morten Ørregaard Nielsen, 2007. "The Effect of Long Memory in Volatility on Stock Market Fluctuations," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 684-700, November.
    20. André K. Anundsen, 2019. "Detecting Imbalances in House Prices: What Goes Up Must Come Down?," Scandinavian Journal of Economics, Wiley Blackwell, vol. 121(4), pages 1587-1619, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:84:y:2021:i:7:d:10.1007_s00184-021-00812-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.