IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v36y1990i2p339-351.html
   My bibliography  Save this article

Nonparametric regression with long-range dependence

Author

Listed:
  • Hall, Peter
  • Hart, Jeffrey D.

Abstract

The effect of dependent errors in fixed-design, nonparametric regression is investigated. It is shown that convergence rates for a regression mean estimator under the assumption of independent errors are maintained in the presence of stationary dependent errors, if and only if [Sigma] r(j)

Suggested Citation

  • Hall, Peter & Hart, Jeffrey D., 1990. "Nonparametric regression with long-range dependence," Stochastic Processes and their Applications, Elsevier, vol. 36(2), pages 339-351, December.
  • Handle: RePEc:eee:spapps:v:36:y:1990:i:2:p:339-351
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0304-4149(90)90100-7
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohamed Chikhi & Anne Péguin-Feissolle & Michel Terraza, 2013. "SEMIFARMA-HYGARCH Modeling of Dow Jones Return Persistence," Computational Economics, Springer;Society for Computational Economics, vol. 41(2), pages 249-265, February.
    2. Jia Chen & Li-Xin Zhang, 2010. "Local linear M-estimation for spatial processes in fixed-design models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 71(3), pages 319-340, May.
    3. Li, Ming & Zhang, Peidong & Leng, Jianxing, 2016. "Improving autocorrelation regression for the Hurst parameter estimation of long-range dependent time series based on golden section search," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 445(C), pages 189-199.
    4. Deo, R. S., 1997. "Nonparametric regression with long-memory errors," Statistics & Probability Letters, Elsevier, vol. 33(1), pages 89-94, April.
    5. Csörgo, Sándor & Mielniczuk, Jan, 1995. "Distant long-range dependent sums and regression estimation," Stochastic Processes and their Applications, Elsevier, vol. 59(1), pages 143-155, September.
    6. Benhenni, K. & Hedli-Griche, S. & Rachdi, M. & Vieu, P., 2008. "Consistency of the regression estimator with functional data under long memory conditions," Statistics & Probability Letters, Elsevier, vol. 78(8), pages 1043-1049, June.
    7. Jan Beran & Yuanhua Feng & Sucharita Ghosh, 2015. "Modelling long-range dependence and trends in duration series: an approach based on EFARIMA and ESEMIFAR models," Statistical Papers, Springer, vol. 56(2), pages 431-451, May.
    8. Youndjé, É. & Vieu, P., 2006. "A note on quantile estimation for long-range dependent stochastic processes," Statistics & Probability Letters, Elsevier, vol. 76(2), pages 109-116, January.
    9. Liang Peng & Qiwei Yao, 2004. "Nonparametric regression under dependent errors with infinite variance," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 56(1), pages 73-86, March.
    10. Beran, Jan & Shumeyko, Yevgen, 2012. "Bootstrap testing for discontinuities under long-range dependence," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 322-347.
    11. Beran, Jan & Weiershäuser, Arno, 2011. "On spline regression under Gaussian subordination with long memory," Journal of Multivariate Analysis, Elsevier, vol. 102(2), pages 315-335, February.
    12. Robinson, Peter M., 1997. "Large-sample inference for nonparametric regression with dependent errors," LSE Research Online Documents on Economics 302, London School of Economics and Political Science, LSE Library.
    13. Philipp Sibbertsen, 2004. "Long memory versus structural breaks: An overview," Statistical Papers, Springer, vol. 45(4), pages 465-515, October.
    14. repec:eee:phsmap:v:484:y:2017:i:c:p:309-335 is not listed on IDEAS
    15. Ngai Chan & Rongmao Zhang, 2009. "M-estimation in nonparametric regression under strong dependence and infinite variance," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(2), pages 391-411, June.
    16. Robinson, P.M., 2011. "Asymptotic theory for nonparametric regression with spatial data," Journal of Econometrics, Elsevier, vol. 165(1), pages 5-19.
    17. Jan Beran & Yuanhua Feng, 2002. "Local Polynomial Fitting with Long-Memory, Short-Memory and Antipersistent Errors," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 54(2), pages 291-311, June.
    18. Tsionas, Efthymios G., 2000. "Bayesian model comparison by Markov chain simulation: Illustration using stock market data," Research in Economics, Elsevier, vol. 54(4), pages 403-416, December.
    19. Zhibiao Zhao & Yiyun Zhang & Runze Li, 2014. "Non-Parametric Estimation Under Strong Dependence," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(1), pages 4-15, January.
    20. Beran, Jan & Feng, Yuanhua, 2002. "SEMIFAR models--a semiparametric approach to modelling trends, long-range dependence and nonstationarity," Computational Statistics & Data Analysis, Elsevier, vol. 40(2), pages 393-419, August.
    21. Linyuan Li & Yimin Xiao, 2007. "Mean Integrated Squared Error of Nonlinear Wavelet-based Estimators with Long Memory Data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 59(2), pages 299-324, June.
    22. Peng, Liang & Yao, Qiwei, 2004. "Nonparametric regression under dependent errors with infinite variance," LSE Research Online Documents on Economics 22874, London School of Economics and Political Science, LSE Library.
    23. Beran, Jan & Feng, Yuanhua & Ocker, Dirk, 1999. "SEMIFAR models," Technical Reports 1999,03, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:36:y:1990:i:2:p:339-351. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.