IDEAS home Printed from https://ideas.repec.org/a/spr/lifeda/v27y2021i4d10.1007_s10985-021-09530-8.html
   My bibliography  Save this article

A generalized theory of separable effects in competing event settings

Author

Listed:
  • Mats J. Stensrud

    (Ecole Polytechnique Fédérale de Lausanne)

  • Miguel A. Hernán

    (Harvard T. H. Chan School of Public Health
    Harvard T. H. Chan School of Public Health
    Harvard T.H. Chan School of Public Health)

  • Eric J Tchetgen Tchetgen

    (University of Pennsylvania)

  • James M. Robins

    (Harvard T. H. Chan School of Public Health
    Harvard T. H. Chan School of Public Health
    Harvard T.H. Chan School of Public Health)

  • Vanessa Didelez

    (Leibniz Institute for Prevention Research and Epidemiology - BIPS
    University of Bremen)

  • Jessica G. Young

    (Harvard T. H. Chan School of Public Health
    Harvard T.H. Chan School of Public Health
    Harvard Medical School and Harvard Pilgrim Health Care Institute)

Abstract

In competing event settings, a counterfactual contrast of cause-specific cumulative incidences quantifies the total causal effect of a treatment on the event of interest. However, effects of treatment on the competing event may indirectly contribute to this total effect, complicating its interpretation. We previously proposed the separable effects to define direct and indirect effects of the treatment on the event of interest. This definition was given in a simple setting, where the treatment was decomposed into two components acting along two separate causal pathways. Here we generalize the notion of separable effects, allowing for interpretation, identification and estimation in a wide variety of settings. We propose and discuss a definition of separable effects that is applicable to general time-varying structures, where the separable effects can still be meaningfully interpreted as effects of modified treatments, even when they cannot be regarded as direct and indirect effects. For these settings we derive weaker conditions for identification of separable effects in studies where decomposed, or otherwise modified, treatments are not yet available; in particular, these conditions allow for time-varying common causes of the event of interest, the competing events and loss to follow-up. We also propose semi-parametric weighted estimators that are straightforward to implement. We stress that unlike previous definitions of direct and indirect effects, the separable effects can be subject to empirical scrutiny in future studies.

Suggested Citation

  • Mats J. Stensrud & Miguel A. Hernán & Eric J Tchetgen Tchetgen & James M. Robins & Vanessa Didelez & Jessica G. Young, 2021. "A generalized theory of separable effects in competing event settings," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(4), pages 588-631, October.
  • Handle: RePEc:spr:lifeda:v:27:y:2021:i:4:d:10.1007_s10985-021-09530-8
    DOI: 10.1007/s10985-021-09530-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10985-021-09530-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10985-021-09530-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018. "Double/debiased machine learning for treatment and structural parameters," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
    2. Torben Martinussen & Stijn Vansteelandt & Per Kragh Andersen, 2020. "Subtleties in the interpretation of hazard contrasts," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(4), pages 833-855, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Torben Martinussen & Mats Julius Stensrud, 2023. "Estimation of separable direct and indirect effects in continuous time," Biometrics, The International Biometric Society, vol. 79(1), pages 127-139, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-dimensional econometrics and regularized GMM," CeMMAP working papers CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    2. Nicolaj N. Mühlbach, 2020. "Tree-based Synthetic Control Methods: Consequences of moving the US Embassy," CREATES Research Papers 2020-04, Department of Economics and Business Economics, Aarhus University.
    3. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP72/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    4. Sant’Anna, Pedro H.C. & Zhao, Jun, 2020. "Doubly robust difference-in-differences estimators," Journal of Econometrics, Elsevier, vol. 219(1), pages 101-122.
    5. Ruoxuan Xiong & Allison Koenecke & Michael Powell & Zhu Shen & Joshua T. Vogelstein & Susan Athey, 2021. "Federated Causal Inference in Heterogeneous Observational Data," Papers 2107.11732, arXiv.org, revised Apr 2023.
    6. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    7. Jelena Bradic & Weijie Ji & Yuqian Zhang, 2021. "High-dimensional Inference for Dynamic Treatment Effects," Papers 2110.04924, arXiv.org, revised May 2023.
    8. Davide Viviano & Jelena Bradic, 2019. "Synthetic learner: model-free inference on treatments over time," Papers 1904.01490, arXiv.org, revised Aug 2022.
    9. Sallin, Aurelién, 2021. "Estimating returns to special education: combining machine learning and text analysis to address confounding," Economics Working Paper Series 2109, University of St. Gallen, School of Economics and Political Science.
    10. Pedro Carneiro & Sokbae Lee & Daniel Wilhelm, 2020. "Optimal data collection for randomized control trials [Microcredit impacts: Evidence from a randomized microcredit program placement experiment by Compartamos Banco]," The Econometrics Journal, Royal Economic Society, vol. 23(1), pages 1-31.
    11. Sung Jae Jun & Sokbae Lee, 2020. "Causal Inference under Outcome-Based Sampling with Monotonicity Assumptions," Papers 2004.08318, arXiv.org, revised Oct 2023.
    12. Rachel Axelrod & Daniel Nevo, 2023. "A sensitivity analysis approach for the causal hazard ratio in randomized and observational studies," Biometrics, The International Biometric Society, vol. 79(3), pages 2743-2756, September.
    13. Soren Blomquist & Anil Kumar & Che-Yuan Liang & Whitney K. Newey, 2022. "Nonlinear Budget Set Regressions for the Random Utility Model," Working Papers 2219, Federal Reserve Bank of Dallas.
    14. Xinkun Nie & Stefan Wager, 2017. "Quasi-Oracle Estimation of Heterogeneous Treatment Effects," Papers 1712.04912, arXiv.org, revised Aug 2020.
    15. Oyenubi, Adeola & Kollamparambil, Umakrishnan, 2023. "Does noncompliance with COVID-19 regulations impact the depressive symptoms of others?," Economic Modelling, Elsevier, vol. 120(C).
    16. Munday, Tim & Brookes, James, 2021. "Mark my words: the transmission of central bank communication to the general public via the print media," Bank of England working papers 944, Bank of England.
    17. Juan Carlos Escanciano & Telmo P'erez-Izquierdo, 2023. "Automatic Locally Robust Estimation with Generated Regressors," Papers 2301.10643, arXiv.org, revised Nov 2023.
    18. Waverly Wei & Maya Petersen & Mark J van der Laan & Zeyu Zheng & Chong Wu & Jingshen Wang, 2023. "Efficient targeted learning of heterogeneous treatment effects for multiple subgroups," Biometrics, The International Biometric Society, vol. 79(3), pages 1934-1946, September.
    19. Elek, Péter & Bíró, Anikó, 2021. "Regional differences in diabetes across Europe – regression and causal forest analyses," Economics & Human Biology, Elsevier, vol. 40(C).
    20. Michael C. Knaus, 2021. "A double machine learning approach to estimate the effects of musical practice on student’s skills," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(1), pages 282-300, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lifeda:v:27:y:2021:i:4:d:10.1007_s10985-021-09530-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.